TP programmation dynamique : le problème du sac à dos

I. Le problème du sac à dos

1) Le problème

On dispose de n objets de masses m_k et de valeurs v_k , $1 \le k \le n$. On souhaite en emporter une partie dans un sac à dos mais la masse totale qu'on peut porter doit être inférieure à une valeur m fixée.

Comment emporter la plus grande valeur possible tout en respectant cette contrainte?

2) Formalisation du problème

Dans la suite nous allons numéroter les objets de 1 à n : chaque objet sera donc identifié précisément par son numéro. Soit $E = \{1, ..., n\}$ l'ensemble de ces objets. Nous supposons de plus, sans perte de généralité, que la masse et la valeur de chaque objet sont des entiers strictement positifs.

Pour tout entier i tel que $0 \le i \le n$, nous définissons les ensembles :

$$E_0 = \emptyset$$
; $E_1 = \{1\}$... $E_i = \{1, ..., i\}$ et $E_n = \{1, ..., n\} = E$

Concentrons-nous sur E_i avec i quelconque mais fixé. Pour tout partie $J \subset E_i$ nous posons :

$$m(J) = \begin{cases} 0 & \text{si } J = \emptyset \\ \sum_{j \in J} m_j & \text{si } J \neq \emptyset \end{cases} \text{ et } v(J) = \begin{cases} 0 & \text{si } J = \emptyset \\ \sum_{j \in J} v_j & \text{si } J \neq \emptyset \end{cases}$$

Ainsi m(J) et v(J) sont respectivement la masse totale et la valeur totale des objets qui appartiennent à J.

Pour tout entier $m \ge 0$, nous posons :

$$\mathscr{F}_i(m) = \{ J \subset E_i \mid m(J) \leqslant m \}$$

Exercice 1: a) De quoi est constitué $\mathscr{F}_0(m)$? b) Pour i quelconque compris entre 0 et n, de quoi est constitué $\mathscr{F}_i(0)$? c) Montrer que pour tout $i \in \{0, ..., n\}, \varnothing \in \mathscr{F}_i(m)$.

Posons en outre:

$$V_i(m) = \{ v(J) \mid J \in \mathscr{F}_i(m) \} \subset \mathbb{N}$$

Exercice 2: pour tout i tel que $0 \le i \le n$ et tout $m \ge 0$: a) Montrer que $V_i(m)$ n'est jamais vide. b) Donner un majorant de $V_i(m)$.

En tant que partie non vide et majorée de \mathbb{N} , $V_i(m)$ admet un **plus grand élément** que nous notons c(i, m).

Résoudre le problème du sac à donc consiste donc, la masse m étant fixée :

- 1. à trouver c(n, m) (valeur optimale);
- 2. à trouver toutes les parties $J \subset E_n = E$ telles que v(J) = c(n, m).

3) Algorithme force brute

L'algorithme force brute procède de la façon suivante :

- 1. Déterminer toutes les parties J de $E = \{1, ..., n\}$. Pour chacune d'entre elles calculer sa masse m(J).
- 2. Sélectionner les parties qui vérifient $m(J) \leq m$ et pour chacune d'entre elles calculer v(J).
- 3. Chercher le plus grand v(J) et lister les parties J qui lui sont associées.

Exercice 3: quel est le nombre de parties d'un ensemble E de cardinal n? Exemple avec n = 50:

- a) Est-il possible de stocker dans la mémoire vide (RAM) d'un ordinateur possédant 8 Go de RAM toutes les parties de E?
- b) Essayons d'utiliser un disque dur pour stocker les données au fur et à mesure qu'on les obtient. Sachant qu'un très bon disque dur actuel a un capacité de 8 To (tera-octets), cela sera-t-il suffisant?

4) Programmation dynamique

On se donne une masse $m \ge 0$ et on va commencer par chercher une relation de récurrence sur les c(i, m) définis au 2).

Proposition

- 1. c(0,m)=0 et, pour tout i tel que $0 \le i \le n$, c(i,0)=0.
- 2. Supposons $i \ge 1$ et notons m_i la masse de l'objet numéro i et v_i sa valeur :
 - a) Si $m_i > m$ alors c(i, m) = c(i 1, m);
 - b) Si $m_i \leq m$ alors:

$$c(i, m) = \max(c(i-1, m), c(i-1, m-m_i) + v_i)$$

Démonstration : sur feuille à part.

On voit donc à nouveau apparaître la sous-structure optimale. On décrit maintenant des algorithmes permettant de calculer c(n, m).

a) Versions récursives de l'algorithme

On suppose que les masses des objets et leurs valeurs sont stockées dans deux listes masses et valeurs de tailles n+1, définies comme variables globales, mais nous n'allons utiliser que les alvéoles d'indices 1 à n qui contiennent les masses et les valeurs des différents objets.

Pour tester vos fonctions vous pourrez utiliser par exemple:

masses = [0, 1, 2, 5, 6, 7] et valeurs = [0, 1, 6, 18, 22, 28] (le premier élément de chacune de ces deux listes n'a pas d'importance : on l'a donc mis arbitrairement à 0).

Exercice 4 : écrire une version récursive naïve c1(n,m) qui prend en paramètres le nombre n d'objets ainsi que la masse maximale m et qui renvoie la valeur maximale c(n,m) correspondante.

On ne dessinera ici pas un arbre des appels récursif mais une fois de plus, le chevauchement des sous-problèmes est important. On en vient donc à :

Exercice 5 : écrire une version c2(n,m) de cette fonction avec mémoïsation. On utilisera un dictionnaire dico formé des couples ((n,m) : c(n,m)) (les clés sont donc les tuples (n,m)).

b) Construction d'une solution

Nous cherchons maintenant à fournir une liste des objets qui maximiseront la valeur une fois dans le sac à dos tout en respectant la contrainte de masse.

Pour cela il faut modifier la fonction c2(n,m) précédente pour qu'elle renvoie en plus de c(n,m) laquelle des deux valeurs c(n-1,m) et $c(n-1,m-m_n)+v_n$ était la plus grande (le cas échéant) lors du calcul de c(n,m).

Une façon de procéder consiste à faire renvoyer à c(n,m) un tuple formé de la valeur de c(n,m) et d'un entier k qui vaut :

- 1 si $c(n-1,m) \ge c(n-1,m-m_n) + v_n$: dans ce cas, l'objet numéro n ne fait pas partie de la solution retenue;
- 2 si $c(n-1,m) < c(n-1,m-m_n) + v_n$: dans ce cas l'objet numéro n doit être inclu dans la liste formant la solution;
- 0 dans tous les autres cas de renvoi de la fonction.

On doit aussi veiller à modifier le dictionnaire dico qui est maintenant constitué des couples ((n,m):(c(n,m),k)).

Exercice 6 : écrire une version modifiée c2_modif(n,m) de la version récursive avec mémoïsation, permettant de réaliser cela.

Il es maintenant possible de construire une solution optimale grâce à la fonction **construire** que l'on écrit de façon récursive. La fonction renvoie la liste des objets (c'est à dire de leurs numéros) qui ont servi à obtenir c(n, m).

Exercice 7 : compléter la fonction ci-dessous :

```
def construire(n,m):
if m == 0:
    return[]
elif n == 0:
    return[]
else:
```

et l'implémenter dans l'EDI.

Exemple:

Si on prend m = 11, que renvoient les fonctions c(n,m) et construire avec les listes données au 4)a)? Est-ce cohérent?

II. Ouverture : partition équilibrée d'un ensemble d'entiers strictement positifs

1) Le problème

On considère n personnes qui souhaitent monter à bord d'une grande barque un peu instable. Pour simplifier, on suppose que les personnes vont s'asseoir soit à bâbord, soit à tribord. Pour équilibrer le bateau, on voudrait que la somme des masses des personnes assises à bâbord soit la plus proche possible de la somme des masses des personnes assises à tribord.

En supposant que les masses des personnes sont des entiers strictement positifs comment placer les personnes sur le bateau de façon optimale?

2) Formalisation du problème

Numérotons les personnes de 1 à n : chaque personne est donc spécifiée par son numéro et nous appelons $E = \{1, ..., n\}$ l'ensemble de toutes ces personnes. La personne numéro k a une masse m_k .

Notons B l'ensemble des personnes assises à bâbord et T l'ensemble des personnes assises à tribord. Si on appelle m(B) la masse totale des personnes dans B et m(T) celle des personnes dans T, on doit résoudre le problème suivant : trouver B et T de sorte que :

$$B \cup T = E$$
; $B \cap T = \emptyset$ et $|m(B) - m(T)|$ minimale (1)

En y réfléchissant bien on peut adopter le point de vue suivant : soit M la masse totale des personnes dans E et $A \subset E$ une partie non vide de E telle que $m(A) \leq M/2$ (m(A) étant bien sûr la masse totale des personnes dans A).

Exercice:

On dit A minimise sa distance à M/2 si et seulement si la valeur M/2 - m(A) est minimale parmi tous les autres sous-ensembles possibles vérifiant $m(A) \leq M/2$.

- a) Montrer que si on dispose d'une partie A qui minimise sa distance à M/2, alors la paire A et $A' = E \setminus A$ est une solution à notre problème de partitionnement équilibré.
- b) Inversement, montrer que si B et T sont deux parties de E qui vérifient (1) alors l'un des deux (B ou T) a une masse inférieure à M/2 et minimise sa distance à M/2.
 - Le problème consiste donc à chercher toutes les parties non vides $A \subset E$ telles que $m(A) \leq M/2$ et m(A) la plus grande possible.
- c) Montrer qu'il s'agit d'un cas particulier du problème du sac à dos. Quelles sont les valeurs associées aux personnes?