DS-5 - Barème

	Pas assez	Adapté	Trop
Quantité de questions traitées			
Détail de la rédaction			
Soin de la rédaction			
Commentaires pertinents			

	CHIMIE - Problème 1 : Etude d'une combustion	élève	prof	max	
Q.1.a)	réaction totale \Rightarrow stœchiométrie respectée $\Rightarrow n(O_2) = n(CO)/2$			1	
Q.1.a)	or $n(CO) = n_0$ et $n(N_2) = 4n(O_2) = 2n_0 = 2$ mol				
	BONUS si tableau d'avancement; BONUS si colonne "total gaz"				
	$\Delta H = 0$; car isobare et adiabatique; schéma			4	
	$\Delta H = \Delta H_1 + \Delta H_2$ car H function d'état				
Q.1.b)	$\Delta H_1 = \Delta_r H^0(T_0) n_0$ car réaction totale supposée isotherme				
4.1. 0)	$\Delta H_2 = (n_0 C_{pm}(CO_2) + 2n_0 C_{pm}(N_2))(T_F - T_0)$				
	$T_F = T_0 - \frac{\Delta_r H^0(T_0)}{C_{pm}(CO_2) + 2C_{pm}(N_2)}; T_F = 3270 \text{ K}$				
	BONUS si cohérent avec une température de flamme				
	$\Delta_r S^0 = S_m^0(CO_2) - S_m^0(CO) - \frac{1}{2} S_m^0(O_2) = -86, 4 \ J.K^{-1}.mol^{-1}$			3.5	
	unité correcte; BONUS si < 0 en accord avec quantité de gaz qui diminue				
O(2s)	$\Delta_r G^0(T) = -283.10^3 + 86,4 \times T \text{ (en } J.mol^{-1})$				
Q.2.a)	$K^0 = exp\left(-\frac{\Delta_r G^0}{RT}\right)$ et approximation d'Ellingham				
	$A = exp\left(\frac{\Delta_r S^0}{R}\right) = 3.05 \times 10^{-5} \text{ (sans unité)}$				
	$B = -\frac{\Delta_r H^0}{R} = 3.41 \times 10^4 K$; unités correctes pour A et B				
Q.2.b)	tableau d'avancement; $K^0(T_F) = \frac{x(CO_2)}{x(CO)} \sqrt{\frac{P^0}{x(O_2)P}}$			1.5	
•	$K^{0}(T_{F}) = \frac{\xi_{eq}}{n_{0} - \xi_{eq}} \sqrt{\frac{7n_{0} - \xi_{eq}}{n_{0} - \xi_{eq}}}$ $T_{F} = \frac{B}{ln\left(\frac{K^{0}}{A}\right)}; T_{F} = 2500 \text{ K pour } \xi_{eq} = 0.8 \text{ mol}$				
	$T_F = \frac{B}{(2.5)}$; $T_F = 2500 \ K \ \text{pour } \xi_{eq} = 0.8 \ mol$			1	
Q.2.c)					
•	BONUS si $K^0(\xi_{eq} = 0.8 \ mol) = 20.4 > 1$ cohérent car réaction avancée mais				
	non totale				
	Idem Q.1.b); $T_F = T_0 - \frac{\xi_{eq} \Delta_r H^0(T_0)}{C_{r,tot}}$			2	
	avec $C_{p,tot} = (n_0 - \xi_{eq})C_{pm}(CO) + 0.5(n_0 - \xi_{eq})C_{pm}(O_2) + \xi_{eq}C_{pm}(CO_2) +$				
$\mathbf{Q.3}$	$2n_0C_{pm}(N_2)$				
	$T_F = 2641 K$ pour $\xi_{eq} = 0.8 mol$; BONUS si T_F plus faible que Q.1.b) normal				
	car il faut chauffer davantage de gaz (réactifs)				
$\mathbf{Q.4}$	Intersection des deux courbes; $\xi_{eq} = 0.77 \ mol \ {\rm et} \ T_F = 2572 \ K$			1	
	Total			14	

	CHIMIE - Problème 2 : Equilibre de Deacon	élève	prof	max
Q.1	Approximation d'Ellingham; $\Delta_r S^0 = -130, 5 \ J.K^{-1}.mol^{-1}$			1.5
	BONUS si $\Delta_r S^0 < 0$ car diminution de la quantité de gaz/du désordre			
	$\Delta_r H^0 = -115, 5 \ kJ.mol^{-1}$; BONUS si $\Delta_r H^0 < 0 \Rightarrow$ réaction exothermique			
Q.2	$K^0 = exp\left(-\frac{\Delta_r G^0}{RT}\right) = 5.3$			0.5
٧.2	BONUS si $K^0 > \simeq 1 \Rightarrow$ réaction avec taux d'avancement proche de 50%			
	$\Delta_r G = \Delta_r G^0 + RT \ln(Q_r)$; $Q_r = \frac{n^2(Cl_2)n^2(H_2O)}{n^4(HCl)n(O_2)} n_{tot}$; $Q_r = 0$ à l'état initial			2.5
Q.3	$\Delta_r G \to -\infty$; critère d'évolution $\Delta_r G d\xi \leq 0 \Rightarrow \xrightarrow{1}$			
	BONUS si cohérent car il n'y avait que des réactifs			
Q.4	tableau d'avancement; BONUS si colonne total gaz			2
Q.4	$\tau = \frac{\xi_F}{n_0}$; $x(HCl) = \frac{4(1-\tau)}{5-\tau}$ et $x(O_2) = \frac{1-\tau}{5-\tau}$; $x(H_2O) = x(Cl_2) = \frac{2\tau}{1-\tau}$			
$\mathbf{Q.5}$	$Q_r = rac{ au^4(5- au)}{16(1- au)^5}$			2
Q.6.a)	fonction f correcte			0.5
O 6 b)	boucle while; abs(b-a)>eps; calcul du milieu; if, elif et else			3.5
Q.6.b)	signes corrects pour l'algorithme; syntaxe correcte; indentation correcte			
Q.7	Calculatrice $\Rightarrow \tau_{eq} = 0.62$; BONUS si cohérent car $\tau_{eq} \simeq 0.5$ avec $K^0 \simeq 1$			0.5
	Total			13

	PHYSIQUE - Problème 3 : A propos du champ magnétique - d'après CCS - PC - 2010 et CCS - TSI - 2011	élève	prof	max
	forme locale : $\overrightarrow{div}\overrightarrow{B}=0$; forme intégrale : $\oiint_{S_{ferm\'ee}}\overrightarrow{B}\cdot\overrightarrow{dS}=0$			2
Q.1	flux identique à travers toute surface s'appuyant sur un même contour conservation du flux à travers un tube de champ magnétique			
	a) $\leftrightarrow \alpha$; invariance selon $y \Rightarrow \overrightarrow{A} = A(x)\overrightarrow{u}_y$; $div\overrightarrow{A} = 0$ (conservatif)			6
0.0	b) $\leftrightarrow \gamma$; invariance selon $\theta \Rightarrow \overrightarrow{A} = A(r)\overrightarrow{u}_{\theta}$; $div\overrightarrow{A} = 0$ (conservatif)			
Q.2	c) $\leftrightarrow \beta$; invariance selon $\theta \Rightarrow \overrightarrow{A} = A(r)\overrightarrow{u}_r$; $div \overrightarrow{A} \neq 0$ (non conservatif)			
	d) $\leftrightarrow \gamma$; invariance selon r et $\theta \Rightarrow \overrightarrow{A} = cste \overrightarrow{u}_{\theta}$; $div \overrightarrow{A} = 0$ (conservatif)			
	a) $\overrightarrow{\cot A} = \frac{\partial A(x)}{\partial x} \overrightarrow{u_z} \neq \overrightarrow{0}$			2.5
	$\begin{vmatrix} a & 10t & A & = \frac{\partial x}{\partial x} & dz \neq 0 \\ b & \overrightarrow{r} & \overrightarrow{A} & = \frac{1}{2} \frac{\partial (rA(r))}{\partial x} \neq 0, \text{ souf } c; A(r) = k \end{vmatrix}$			2.0
Q.3	b) $\overrightarrow{rot} \overrightarrow{A} = \frac{1}{r} \frac{\partial x}{\partial r} \frac{\partial z}{\partial r} \overrightarrow{v} = 0$; sauf si $A(r) = \frac{k}{r}$ c) $\overrightarrow{rot} \overrightarrow{A} = \overrightarrow{0}$			
	(c) rot $A = 0(c)$ rot $A = 0(c)$ rot $A = 0(c)$ rot $A = 0$			
	$\overrightarrow{d} \overrightarrow{rot} \overrightarrow{A} = \frac{1}{r} \frac{\partial (rk)}{\partial r} \overrightarrow{u_z} = \frac{k}{r} \overrightarrow{u_z} \neq \overrightarrow{0}$ $(MF) \text{ dans l'ARQS} : \overrightarrow{rot} \overrightarrow{B} = \mu_0 \overrightarrow{j} ; \text{ démo th. d'Ampère avec Stokes}$			
$\mathbf{Q.4}$				1
	BONUS si mention d'une convention d'orientation		I	
Q.5.a)	solénoïde ∞ si $\ell \gg R$; BONUS si loin des bords			0.5
Q.5.b)	$(M, \overrightarrow{u_r}, \overrightarrow{u_\theta}) = \Pi_{sym \ des \ courants};$ invariance selon θ et $z \Rightarrow \overline{B}(M, t) = B(r, t) \overrightarrow{u_z}$			1
	schéma avec $\mathcal{C}_{orient\acute{e}}$; circulation sur $\mathcal{C}_{orient\acute{e}}$ avec utilisation de $\overrightarrow{B}_{ext} = \overrightarrow{0}$			2.5
$\mathbf{Q.5.c})$	$i_{enlac\acute{e}} = \pm \frac{N}{\ell} Li_c(t)$; signe justifié avec règle de la main droite			
	$\overrightarrow{B}_{int} = \mu_0 \frac{\overrightarrow{N}}{\ell} i_c(t) \overrightarrow{u_z}$			
Q.5.d)	$B_{int} = 5 \ mT$; BONUS si faible avec comparaison avec B_{IRM} ou $B_{terrestre}$			2
	commentaire sur $\frac{N}{\ell}$ avec limite; commentaire sur i_c avec limite			
	commentaire sur $\mu_0 \to \mu_0 \mu_r$ et limite		Γ	
Q.6	$\phi_{1 \ spire} = \mu_0 \frac{N}{\ell} i_c \pi r_b^2$; pour $N_b \ spires \ \phi_{tot} = N_b \mu_0 \frac{N}{\ell} i_c \pi r_b^2$			1.5
	or $\Phi_{tot} = Mi_c \text{ donc } M = \mu_0 \frac{NN_b}{\ell} \pi r_b^2$			0.5
0.7	schéma électrique; complet avec R_u , R_b , L_b et M			2.5
Q.7.a)	BONUS si commentaire sur l'impédance très grande de l'oscillo			
	utilisation de la loi de Faraday; $\frac{L_b}{R_u} \frac{du}{dt} + \left(1 + \frac{R_b}{R_u}\right) u = -M \frac{di_c}{dt}$; signes OK		I	
	complexes $\Rightarrow \left(\frac{jL_b\omega}{R_u} + 1 + \frac{R_b}{R_u}\right) \underline{u} = -j\omega M \underline{i}_c$			4.5
	avec $R_u \gg L_b \omega$ et $R_u \gg R_b$, $\underline{u} = -j\omega M \underline{i}_c$; $U_m = \underline{u} = M\omega I_m = 2\pi M f I_m$			
Q.7.b)	$U_m \propto f \Rightarrow$ régression linéaire (f, U_m) ; $r = 0.999997 > 0.99$ qui valide le modèle			
	$a = 3.97.10^{-3}$; $M = \frac{a}{2\pi I_m} = 6.31.10^{-4} \mathrm{H}$; unité correcte			
	$N_b = \frac{M\ell}{\mu_0 N \pi r_b^2} = 100$; BONUS si commentaires sur la cohérence des A.N.			
Q.7.c)	question ouverte, 0.5 points par idée ou calcul intéressant			?
Q.8.a)	loi de Faraday; démonstration			1
Q.8.b)	invariance selon z ; schéma et/ou mention claire de la convention pour $\mathcal C$			1.5
	$E(r,t) = -\frac{r}{2} \frac{dB}{dt} = -\mu_0 \frac{N}{\ell} \frac{r}{2} \frac{di_c}{dt}$ loi d'Ohm locale $\overrightarrow{j_1} = \gamma_{Al} \overrightarrow{E_1} = -\mu_0 \gamma_{Al} \frac{N}{\ell} \frac{r}{2} \frac{di_c}{dt} \overrightarrow{u_\theta}$		T	T
$\mathbf{Q.8.c)}$	loi d'Ohm locale $j_1' = \gamma_{Al} E_1' = -\mu_0 \gamma_{Al} \frac{N}{\ell} \frac{r}{2} \frac{di_c}{dt} \overrightarrow{u_{\theta}}$			1
Q.9.a)	invariance des courants par θ et z			1
	$(M, \overrightarrow{u_r}, \overrightarrow{u_\theta}) = \Pi_{sym \ des \ courants} \ donc \ B_1(M, t) = B_1(r, t) \ \overrightarrow{u_z}$			
Q.9.b)	$(M, \overrightarrow{u_r}, \overrightarrow{u_\theta}) = \Pi_{sym \ des \ courants} \ \text{donc} \ \overrightarrow{B_1}(M, t) = B_1(r, t) \ \overrightarrow{u_z}$ $\overrightarrow{\text{rot}} \ \overrightarrow{B_1'} = -\frac{\partial B_1}{\partial r} \ \overrightarrow{u_\theta} = -\mu_0^2 \gamma_{\text{Al}} \frac{N}{\ell} \frac{r}{2} \frac{\text{d}i_c}{\text{d}t} \ \overrightarrow{u_\theta} \ \text{si} \ a \leqslant r \leqslant b$			1
ω.υ. υ)	$\overrightarrow{rot} \overrightarrow{B_1} = -\frac{\partial B_1}{\partial r} \overrightarrow{u_\theta} = \overrightarrow{0} \text{ si } r < a;$ continuité de B_1 en $r = b$ et $r = a$			
	$B_1(r,t) = \mu_0^2 \gamma_{\text{Al}} \frac{N}{\ell} \frac{(r^2 - b^2)}{4} \frac{\text{d}i_c}{\text{d}t} \text{ si } a \leqslant r \leqslant b$			
	$B_1(r,t) = \mu_0^2 \gamma_{\text{Al}} \frac{N}{\ell} \frac{(a^2 - b^2)}{\ell} \frac{di_c}{dt} \text{ si } r < a$			
O 10 - \	terme de mutuelle induction; flux total avec N_b ; loi de Faraday			2
Q.10.a)	$e_i(t) = -\frac{\mathrm{d}\Phi(\overrightarrow{B}_{\text{tot}}/S)}{\mathrm{d}t} = -M \left(\frac{\mathrm{d}i_c}{\mathrm{d}t} - \frac{\mu_0 \gamma_{\text{Al}} (b^2 - a^2)}{4} \frac{\mathrm{d}^2 i_c}{\mathrm{d}t^2} \right)$		1	1
	$dt = \frac{1}{4} \left(dt + \frac{dt^2}{dt} \right)$			

	schéma électrique; auto-induction L_b et R_u négligées	2.5
Q.10.b)	complexe $\Rightarrow u(t) = -M j\omega \left(1 - \frac{\mu_0 \gamma_{Al} (b^2 - a^2)}{4} j\omega\right) \underline{i}_c(t)$	
	$U_{m} = M\omega \sqrt{1 + \left(\frac{\omega}{\omega_{0}}\right)^{2}} I_{m}; \ \omega_{0} = \frac{4}{\mu_{0}\gamma_{\text{Al}}(b^{2} - a^{2})}$ $\omega_{0} = 1,4.10^{3} \text{ rad.s}^{-1}$	
Q.10.c)		4
	déclaration des constantes avec valeurs numériques; initialisation d'une liste utilisation de random.uniform; calcul de ω_0 avec les valeurs précédentes ajout d'éléments dans la liste avec .append(); utilisation de np.std() affichage avec print()	
	$\int f_0 = \frac{\omega_0}{2\pi} = 220 \ Hz; \log U_m = \log(2\pi M I_m) + \log(f) + \frac{1}{2} \log \left[1 + \left(\frac{f}{f_0} \right)^2 \right]$	5
Q.10.d)	$f \ll f_0 : \log U_m = \log(2\pi M I_m) + \log(f)$; droite de pente 1 $f \gg f_0 : \log U_m = \log(2\pi M I_m) + 2\log(f) - \log(f_0)$; droite de pente 2 intersection des asymptotes en $f = f_0$ validation graphique : deux droites; intersection pour $f \simeq 220 \ Hz$; pentes	
Q.11.a)	force de Lorentz; schéma	1
Q.11.b)	trajectoire e^- sur schéma; apparition de charges; justification sens de \overrightarrow{E}_H	1.5
Q.12.a)	$\overrightarrow{E_H} = -\overrightarrow{v} \wedge \overrightarrow{B}$	0.5
Q.12.b)	$\overrightarrow{j} = -e n_e \overrightarrow{v}$	0.5
Q.12.c)	$j = \frac{I}{ab}$; $\overrightarrow{E}_H = -\frac{dV}{du}\overrightarrow{u}_y$; $V_H = V(y = a) - V(y = 0) = \frac{R_H IB}{b}$; $R_H = \frac{1}{en_e}$	2
	$n_e = n_a = \frac{\mu N_A}{M}$; $n_e = 8.4.10^{22} \text{cm}^{-3}$; $V_H = 7.4.10^{-8} \text{ V}$	2.5
Q.13.a)	valeurs de I et B réalistes; BONUS si V_H difficilement mesurable signe de V_H permet de trouver le signe des porteurs de charge	
	V_H plus grand car n_e plus faible dans un semi-conducteur	1
Q.13.b)	$B = \frac{n_e e b V_H}{I} = 340 \text{mT}$: BONUS si champ important	
Q.13.c)	n_e dépend de T ; $\left \frac{R_H(T_0+10)-R_H(T_0)}{R_H(T_0)} \right = 1 - \exp\left(-\frac{E}{R} \frac{10}{(T_0+10)T_0}\right) \approx 20\%$	1
	BONUS si variation importante qui peut fausser les mesures	
0.14 -)	$\underline{u}_D(t) = (R + jL\omega)\underline{i}_c(t) \tag{1}$	2.5
Q.14.a)	$ \underline{u}_D(t) = U_m = \sqrt{R^2 + (L\omega)^2} I_m; \ \varphi = \arg(R + jL\omega) = \arctan\left(\frac{L\omega}{R}\right)$	
	$U_m = 95 \text{ V}; \varphi = 81^\circ = 1,41 \text{ rad}$	
Q.14.b)	$P(t) = u_D(t)i_c(t); < \cos(2\omega t + 2\varphi) > = 0; < P > = \frac{U_m I_m}{2}\cos(\varphi)$	2.5
	$\langle P \rangle = \frac{RI_m^2}{2}$; $\langle P \rangle \approx 23$ Watts; BONUS si peu important	
Q.15.a)	schéma équivalent; $i_H(t) = \frac{u_D(t)}{r + R_0}$	2
	$V_H(t) = \frac{R_H i_H(t) B(t)}{b} = \frac{\mu_0 R_H N}{\ell b (r + R_0)} u_D(t) i_c(t) ; k = \frac{\mu_0 R_H N}{\ell b (r + R_0)}$	
Q.15.b)	$V_H(t) = \frac{kU_m I_m}{2} \left[\cos(\varphi) + \cos(2\omega t + 2\varphi) \right]; \text{ passe-bas}; f_c \ll 2 \times f = 100 \text{ Hz}$	1.5
	Total	63.5

TOTAL		90.5