Correction du DM n°1

1 Identification des paramètres d'un circuit RLC série à partir d'une courbe de résonance

Dans le domaine complexe, l'intensité $\underline{i}(t)$ obéit à l'équation : $\underline{e}(t) = (R + jL\omega + \frac{1}{jC\omega})\underline{i}(t)$, où $\underline{e}(t)$ est la représentation complexe de la tension aux bornes du générateur, avec $|\underline{e}(t)| = E$. Il vient :

$$\underline{i}(t) = \frac{\underline{e}(t)}{R + jL\omega + \frac{1}{jC\omega}} = \frac{\underline{e}(t)}{R} \frac{1}{1 + \frac{L}{R}j\omega - \frac{j}{RC\omega}}$$

ce qui est typique d'un passe-bande. On peut introduire un facteur de qualité Q et une pulsation centrale ω_0 en mettant cette relation sous la forme :

$$\underline{i}(t) = \frac{\underline{e}(t)}{R} \frac{1}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

avec:

$$\begin{cases} \frac{Q}{\omega_0} = \frac{L}{R} \\ Q\omega_0 = \frac{1}{RC} \end{cases}$$

et donc, en posant $x = \omega/\omega_0$:

$$I = |\underline{i}(t)| = \frac{E}{R} \frac{1}{\sqrt{1 + Q^2(x - 1/x)^2}}$$

L'amplitude maximale de l'intensité est obtenue pour x=1 et :

$$I_{max} = \frac{E}{R} \Longrightarrow R = \frac{E}{I_{max}} = 100 \,\Omega$$

D'autre part, la bande passante vérifie :

$$Q = \frac{\omega_0}{\Delta \omega} = \frac{f_0}{\Delta f} = \frac{5}{2} \quad \text{et} \quad \omega_0 = 2\pi f_0$$

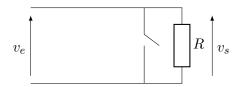
d'où

$$\begin{cases} L = R \frac{Q}{\omega_0} = \frac{5R}{4\pi f_0} = 79,6 \text{ mH} \\ C = \frac{1}{RQ\omega_0} = \frac{1}{5\pi Rf_0} = 1,27 \mu\text{F} \end{cases}$$

2 Étude d'un filtre

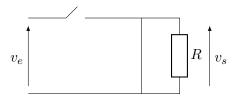
III.A - Analyse qualitative

a) L'impédance d'un condensateur est $1/jC\omega$ et tend vers l'infini (en module) lorsque $\omega \to 0$. Le condensateur se comporte donc comme un interrupteur ouvert en basse fréquence. De plus, un bobine idéale (d'impédance $jL\omega$) se comporte comme un fil en basse fréquence. La représentation du circuit est donc :



On a donc $v_s = v_e$ en basse fréquence.

b) En haute fréquence, le condensateur se comporte comme un fil (son impédance tend vers 0) tandis qu'une bobine se comporte comme un interrupteur ouvert $(|jL\omega| \to +\infty)$. Le circuit équivalent devient :



et donc $v_s = 0$ en haute fréquence.

c) Il s'agit d'un filtre passe-bas.

III.B - Analyse quantitative

III.B.1) L'association parallèle RC est un dipôle d'impédance :

$$\underline{Z}_{eq} = \frac{R}{1 + jRC\omega}$$

Le théorème pont diviseur de tension conduit ensuite à :

$$\underline{v}_s(t) = \underline{v}_e(t) \, \frac{\underline{Z}_{eq}}{jL\omega + \underline{Z}_{eq}}$$

d'où:

$$\underline{H}(j\omega) = \frac{1}{1 + j\frac{L\omega}{R} - LC\omega^2}$$

Par identification, nous obtenons:

$$H_0 = 1$$
 ; $\omega_0 = \frac{1}{\sqrt{LC}}$ et $\lambda = \frac{1}{2R} \sqrt{\frac{L}{C}}$

On vérifie que $\underline{H} \to 1$ lorsque $\omega \to 0$ $(v_s = v_e)$ et que $\underline{H} \to 0$ lorsque $\omega \to +\infty$ $(v_s \to 0)$.

III.B.2)

a) $V_{sm} = |\underline{H}| V_{em}$. On mesure les amplitudes V_{sm} et V_{em} avec un oscilloscope ou un voltmètre numérique utilisé en mode AC.

b) $\varphi_s = \arg(\underline{H}) + \varphi_e$. On mesure le déphasage $\varphi_s - \varphi_e$ avec un oscilloscope, en mesurant le décalage temporel ou bien avec une mesure automatique.

III.B.3) Diagramme de Bode

a) On a:

b) c) et d)

$$|\underline{H}| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + 2\frac{\omega^2}{\omega_0^2}}}$$

ce qui conduit au résultat en développant la parenthèse.

Pulsation	<u>H</u>	$ \underline{H} $	G_{dB}	$\varphi = \arg(\underline{H})$
$\omega \ll \omega_0$	1	1	0	0
$\omega = \omega_0$	$\frac{1}{\sqrt{2}j}$	$\frac{1}{\sqrt{2}}$	$-10\log 2 = -3$	$-\pi/2$
$\omega \gg \omega_0$	$-\frac{\omega_0^2}{\omega^2}$	$\frac{\omega_0^2}{\omega^2}$	$-40\log\left(\frac{\omega}{\omega_0}\right)$	$-\pi$

On obtient alors les diagrammes de Bode représentés sur les FIGURES 1 et 2.

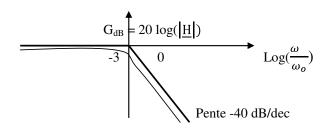


FIGURE 1 – Diagramme de Bode du gain.

La pulsation de coupure à -3 dB est donc ω_0 .

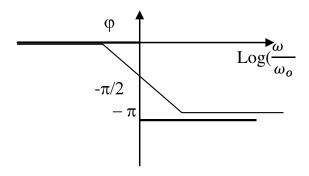


FIGURE 2 – Diagramme de Bode de la phase.

IV.B - Modulation

IV.B.1) D'après le schéma-bloc :

$$s(t) = p(t) + k \times p(t) \times e(t) = A_p \left[1 + k A_m \cos(2\pi f_m t) \right] \cos(2\pi f_{\text{port}} t)$$

On posera donc : $m = kA_m$.

IV.B.2) La courbe est une sinusoïde de période $T_{\rm port}$, dont l'amplitude varie avec une période plus importante T_m . On lit sur le graphe : $T_{\rm port} = 5 \ \mu {\rm s}$ d'où $f_{\rm port} = 200 \ {\rm kHz}$ et $T_m = 250 \ \mu {\rm s}$ d'où $f_m = 4 \ {\rm kHz}$.

L'amplitude du signal varie entre $A_p(1+m)=2.7$ V et $A_p(1-m)=1.6$ V d'où $A_p=2.1$ V et m=0.26.

IV.B.3) En utilisant : $\cos(a)\cos(b) = \frac{1}{2}[\cos(a+b) + \cos(a-b)]$, on obtient :

$$s(t) = A_p \cos(2\pi f_{\text{port}}t) + \frac{A_p m}{2} \cos(2\pi (f_{\text{port}} + f_m)t) + \frac{A_p m}{2} \cos(2\pi (f_{\text{port}} - f_m)t)$$

ce qui donne le spectre représenté sur la FIGURE 3 :

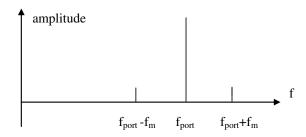


FIGURE 3 – Spectre du signal modulé.

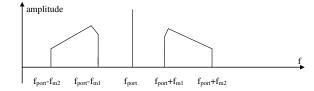


FIGURE 4 – Spectre du signal complet.

IV.B.4) a) Le spectre est représenté sur la FIGURE 4.

IV.B.4) b) La bande passante d'un filtre nécessaire à la transmission intégrale du signal s(t) est donc $[f_{port} - f_{m2}, f_{port} + f_{m2}]$, soit [180,5 kHz; 189,5 kHz]. Il faut utiliser un filtre passe-bande de facteur de qualité $Q = f_{port}/\Delta f = 20$.

IV.B.4) c) La bande passante est assez étroite pour que les différents signaux modulants puissent être récupérés par une même antenne.

IV.C Démodulation synchrone

IV.C.1)

$$s'(t) = k p(t) s(t)$$

$$= k A_p \cos(2\pi f_{port}t) \left[A_p \cos(2\pi f_{port}t) + \frac{A_p m}{2} \cos(2\pi (f_{port} + f_m)t) + \frac{A_p m}{2} \cos(2\pi (f_{port} - f_m)t) \right]$$

$$= \frac{k A_p^2}{2} \left[1 + \cos(2\pi 2 f_{port}t) + \frac{m}{2} \cos(2\pi (2 f_{port} + f_m)t) + m \cos(2\pi f_m t) + \frac{m}{2} \cos(2\pi (2 f_{port} - f_m)t) \right]$$

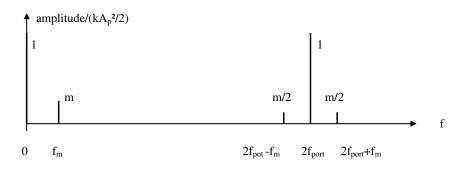


FIGURE 5 – Spectre du signal s'(t)

IV.C.2)

a) Le filtre passe-bas (1) élimine les 3 fréquences les plus élevées, il reste donc la composante continue et l'harmonique à f_m :

$$s''(t) = \frac{kA_p^2}{2} [1 + m\cos(2\pi f_m t)]$$

b) On veut $G_{dB}(2f_{\text{port}}) = -80 \text{ dB} = 40 \log_{10} \left(\frac{f_0}{2f_{\text{port}}}\right)$, d'où :

$$f_0 = 0.02 \ f_{\text{port}} = 4000 \ \text{Hz} \implies \omega_0 = 2.5 \times 10^4 \ \text{rad.s}^{-1}$$

D'autre part :

$$\lambda = \frac{1}{2R} \sqrt{\frac{L}{C}}$$
 avec $L = \frac{1}{C\omega_0^2}$

On en déduit que, avec $\lambda = 1/\sqrt{2}$:

$$R = \frac{1}{2\lambda} \frac{1}{C\omega_0} \stackrel{AN}{=} 28 \times 10^3 \,\Omega = 28 \,\mathrm{k}\Omega$$

Cette valeur est courante et peut facilement se trouver au laboratoire. On peut aussi calculer (bien que cela ne soit pas demandé) :

$$L = \frac{1}{C\omega_0^2} \Longrightarrow L = \frac{1}{4\pi^2 C \times 0,02^2 f_{\text{port}}^2} = 1,85 \text{ H}$$

ce qui est une valeur d'inductance élevée mais tout à fait atteignable au laboratoire.

c) Le condensateur C' élimine la composante continue. Il reste alors :

$$d(t) = \frac{kA_p^2}{2} m \cos(2\pi f_m t)$$

- d) Le filtre passe-bas (2) élimine l'harmonique à $f_m: a(t) = \frac{kA_p^2}{2}$.
- e) La fréquence de d(t) est f_m , le rapport des amplitudes de d(t) et a(t) est $m = kA_m$. L'analyse de d(t) et a(t) permet donc de reconstituer le signal modulant $e(t) = A_m \cos(2\pi f_m t)$.