Mines-Ponts PSI/MP 2022

Chimie et énergie

Corrigé proposé par E. Choubert, relu par A. Courteaux et P. Boulleaux-Binot.

Remarque : La géométrie demandée à la Q2 est hors-programme en MP.

Partie 1. La filière hydrogène

Q1. Z(B) = 5, l'atome de bore possède 5 électrons. Sa configuration électronique dans l'état fondamental est : $1s^2 2s^2 2p^1$. Les 3 électrons des sous-couches 2s et 2p, associés à la couche de $n_{\text{max}} = 2$, sont les électrons de valence du bore.

Les électrons de la sous-couche 2s sont décrits par les quadruplets $(2,0,0,+\frac{1}{2})$ et $(2,0,0,-\frac{1}{2})$.

L'électron de la sous-couche 2p peut par exemple être décrit par le quadruplet $(2,1,-1,+\frac{1}{2})$.

Q2. On calcule pour l'ion tétrahydroborate : $N_v = 3 + 4 \times 1 + 1 = 8 e^-$ de valence, soit $P_v = 4$ doublets ; on donne le schéma de Lewis ci-contre.

L'édifice est de type AX₄ selon le modèle VSEPR. Cet ion est tétraédrique, avec des angles de liaison de 109,5°.

Q3. La quantité de matière initiale des ions Na⁺ et BH₄⁻ vaut :

$$n_{\text{Na}^+,i} = n_{\text{BH}_4^-,i} = CV \text{ AN} : n_{\text{Na}^+,i} = n_{\text{BH}_4^-,i} = 1,0 \text{ mol}$$

On peut établir le tableau d'avancement suivant pour la transformation.

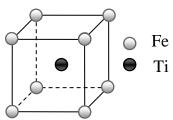
$mol \cdot L^{-1}$	Na ⁺	$+ BH_4^-$	+ 2 H ₂ O	$= Na^+$	$+$ BO $_2^-$	+ 4 H ₂
t = 0	$n_{\mathrm{Na^+,i}}$	$n_{ m BH_4^-,i}$	excès	$n_{\mathrm{Na^+,i}}$	0	0
t	$n_{\mathrm{Na^+,i}}$	$n_{\mathrm{BH_4}^-,\mathrm{i}} - \xi$	excès	$n_{\mathrm{Na^{+},i}}$	٤	4ξ

La quantité de matière théorique de $H_{2(g)}$ que l'on peut générer (cas d'une transformation totale) vaut : $n_{\rm H_2} = 4\xi_{\rm f} = 4CV$.

D'où, d'après l'équation d'état des gaz parfaits : $V_{\rm H_2} = \frac{n_{\rm H_2}RT}{P} = n_{\rm H_2}V_{\rm m}$ où $V_{\rm m}$ est le volume molaire d'un gaz parfait.

AN : $V_{\rm H_2} = 4 \times 1,0 \times 24 = 96 \, \rm L$ (on prend la valeur du volume molaire à 25°C et sous 1 bar)

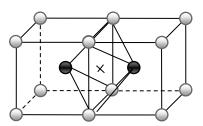
Q4. Le catalyseur permet d'accélérer la réaction mais ne modifie pas l'état final du système. Le volume de dihydrogène généré serait donc inchangé. **Q5.**



Q6. Les atomes de fer et de titane sont en contact selon la diagonale du cube, donc :

$$2R(\text{Fe}) + 2R(\text{Ti}) = a\sqrt{3} \Leftrightarrow a = \frac{2(R(\text{Fe}) + R(\text{Ti}))}{\sqrt{3}} \cdot \text{AN} : a = \frac{2 \times (125 + 145)}{\sqrt{3}} \approx \frac{540}{1,8} = 300 \text{ pm}$$

Q7. On a représenté ci-contre un site octaédrique de type B. Les arêtes de l'octaèdre n'ont pas toutes la même longueur (4 arêtes de longueur a, 8 arêtes de longueur $\frac{a\sqrt{3}}{2}$: ce n'est pas un octaèdre régulier.



Calculons le rayon maximal d'un atome pouvant s'insérer dans le site sans déformation. Au maximum, $2r_0 + 2R(Ti) = a$ ou $2r_0 + 2R(Fe) = a\sqrt{2}$.

D'après les valeurs respectives de R(Ti) et R(Fe), la première condition est la plus restrictive,

donc $r_0 = \frac{a - 2R(Ti)}{2}$. AN: $r_0 = \frac{300 - 2 \times 145}{2} = 5 \text{ pm} < R(H)$. Les sites octaédriques de type B seront donc déformés après introduction des atomes d'hydrogène.

Q8. Déterminons la population de la maille. Une maille contient $N(\text{Fe}) = 8 \times \frac{1}{8} = 1$ atome de fer,

N(Ti) = 1 atome de titane et $N(\text{H}) = 6 \times \frac{1}{2} = 3$ atomes d'hydrogène (les sites octaédriques de type B sont partagés par 2 mailles). La formule du cristal est FeTiH₃.

Q9. Une maille de volume a^3 contient 3 atomes d'hydrogène, soit une quantité de matière $n_{\rm H_2} = \frac{3}{2N_a}$ mol de dihydrogène. Le volume molaire associé vaut donc :

$$V'_{\rm m} = \frac{V}{n_{\rm H.}} = \frac{2a^3N_a}{3}$$
. AN: $V'_{\rm m} \simeq \frac{2\times 6\cdot 10^{23}\times (300\cdot 10^{-12})^3}{3} = 108\times 10^{-7} \text{ m}^3 \cdot \text{mol}^{-1}$, soit

 $V'_{\rm m} \simeq 1,08\cdot 10^{-2}~{\rm L\cdot mol^{-1}} << V_{\rm m}$. Le volume molaire du dihydrogène stocké est nettement inférieur (de 3 ordres de grandeur) à celui de H_2 gazeux, ce mode de stockage est donc très intéressant.

Partie 2 – Piles zinc-air

Q10. L'équation de la réaction de fonctionnement est la combinaison linéaire des demi-équations ci-dessous :

 $Zn + H_2O = ZnO + 2 H^+ + 2 e^-$ soit en milieu basique $Zn + 2 HO^- = ZnO + H_2O + 2 e^-$ et $O_2 + 4 H^+ + 4 e^- = 2 H_2O$ soit en milieu basique $O_2 + 2 H_2O + 4 e^- = 4 HO^-$

Le zinc est oxydé, la poudre de zinc en contact avec A_1 constitue donc l'anode.

 A_2 constitue la cathode, où se déroule la réduction du dioxygène entrant par les orifices C et traversant la membrane semi-perméable.

Les électrons sont libérés à l'anode et consommés à la cathode, et circulent en sens opposé à celui du courant électrique, la cathode constitue donc le pôle + de la pile, l'anode le pôle -.

Q11. La tension à vide standard aux bornes de la pile vaut : $e^{\circ} = E^{\circ}(O_{2(g)} / H_2O_{(l)}) - E^{\circ}(ZnO_{(s)} / Zn_{(s)})$

AN: $e^{\circ} = 1,23 - (-0,43) = 1,66 \text{ V}$

Q12. Pour l'équation de la réaction de fonctionnement : $2 \operatorname{Zn}_{(s)} + \operatorname{O}_{2(g)} = 2 \operatorname{ZnO}_{(s)}$ on a d'après la loi de Hess : $\Delta_r H^\circ = 2\Delta_f H^\circ(\operatorname{ZnO}_{(s)}) - 2\Delta_f H^\circ(\operatorname{Zn}_{(s)}) - \Delta_f H^\circ(\operatorname{O}_{2(g)})$

AN: $\Delta_r H^{\circ} = -2 \times 350 = -700 \text{ kJ} \cdot \text{mol}^{-1}$

Par définition : $\Delta_r S^{\circ} = 2S_m^{\circ}(ZnO_{(s)}) - 2S_m^{\circ}(Zn_{(s)}) - S_m^{\circ}(O_{2(g)})$. AN :

 $\Delta_r S^{\circ} = 2 \times 40 - 2 \times 40 - 200 = -200 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

 $\Delta_r G^{\circ} = \Delta_r H^{\circ} - T \Delta_r S^{\circ}$.

A 298 K: $\Delta_r G^{\circ}(298 \text{ K}) = -700 \cdot 10^3 + 200 \times 298 \approx -640,4 \text{ kJ} \cdot \text{mol}^{-1}$

$$K^{\circ} = e^{-\frac{\Delta_r G^{\circ}}{RT}}$$
. AN: $K^{\circ} = e^{\frac{640400}{8 \times 298}}$

Pour faire l'AN on peut calculer $\log K^{\circ} = \frac{\ln(K^{\circ})}{\ln(10)} \simeq \frac{1}{2,3} \times \frac{640400}{8 \times 300} = \frac{640400}{2,3 \times 24} \simeq 110 \text{ soit } K^{\circ} \simeq 10^{110} \text{. La}$

transformation est totale, c'est cohérent.

Q13.
$$\Delta_r G^\circ = -4Fe^\circ \Leftrightarrow e^\circ = \frac{-\Delta_r G^\circ}{4F}$$
. AN: $e^\circ \approx \frac{640400}{4 \times 10^5} \approx 1,6 \text{ V}$.

La valeur est en accord avec celle calculée à la Q11, compte tenu des approximations sur les $\Delta_f H^{\circ}$, $S_{\rm m}^{\circ}$, sur F, ...

Q14. La durée théorique de fonctionnement vérifie $q = i\Delta t = 4F\xi_{\text{max}} = 2Fn_{\text{Zn,i}}$ (Zn est le réactif

limitant car O_2 est apporté en continu à la cathode), avec : $n_{Zn,i} = \frac{m_{Zn,i}}{M_{Zn}}$.

D'où :
$$\Delta t = \frac{2Fm_{\text{Zn,i}}}{i \times M_{\text{Zn}}}$$
 . AN : $\Delta t = \frac{2 \times 10^5 \times 0.65}{0.8 \cdot 10^{-3} \times 65} = \frac{20}{0.8} \times 10^5 = 2.5 \cdot 10^6 \text{ s (soit environ } \frac{2.5 \cdot 10^6}{24 \times 3600} \approx 30 \text{ jours)}.$

Q15. L'énergie électrique que peut fournir la pile vaut : $W_{\text{\'el}} = Ui\Delta t$ où U est la tension de fonctionnement.

AN :
$$W_{\text{\'el}} = 1,5 \times 0,8 \cdot 10^{-3} \times 25 \cdot 10^{5} = 1,5 \times 20 \cdot 10^{2} = 3,0 \cdot 10^{3} \text{ J}$$

Partie 3 – Energie du sportif

Q16. NO(I) = 0 dans I₂ (corps simple); NO(I) = -I dans I⁻ (charge de l'ion monoatomique); NO(I) = +V dans $IO_3^-(x+3\times(-2)=-1)$

Q17. Les espèces sont placées de bas en haut par potentiel rédox croissant, donc par NO(I) croissant. D'où : $\mathbf{A} = I^-$; $\mathbf{B} = I_2$; $\mathbf{C} = IO_3^-$

Q18. La droite (2) est associée au couple IO₃⁻/ I₂.

$$2 IO_3^- + 12 H^+ + 10 e^- = I_2 + 6 H_2O$$

D'après la loi de Nernst,

$$E = E^{\circ}_{IO_{3}^{-}/I_{2}} + \frac{RT}{10F} \ln \frac{[IO_{3}^{-}]^{2}[H^{+}]^{12}}{[I_{2}](c^{\circ})^{13}} = E^{\circ}_{IO_{3}^{-}/I_{2}} + \frac{RT}{10F} \ln(10) \log \frac{[IO_{3}^{-}]^{2}}{[I_{2}](c^{\circ})} - \frac{12RT}{10F} \ln(10) \times pH$$

La pente de la droite vaut : $-\frac{12RT}{10F}\ln(10) = -\frac{12}{10} \times 0,06 = -0,072 \text{ V}$ à 298 K.

Q19.

$$I_2 + 2 e^- = 2 I^-$$

$$2 S_2 O_3^{2-} = S_4 O_6^{2-} + 2 e^-$$

$$\overline{I_2 + 2 S_2 O_3^{2-}} = 2 I^- + S_4 O_6^{2-}$$

Le diiode titré possède une coloration brune en solution aqueuse. L'équivalence traduira la consommation totale de I_2 , donc la solution passera du jaune à l'incolore. L'ajout de quelques gouttes de thiodène (donnant avec le diiode un complexe bleu sombre) juste avant l'équivalence permettra de repérer plus facilement l'équivalence par le changement de couleur bleu sombre \rightarrow incolore.

Q20. Il s'agit d'un titrage indirect du glucose.

Principe (en notant de (1) à (4) les réactions mises en jeu) :

- I_2 réagit selon (1) pour conduire à I^- et IO_3^- .
- IO₃⁻ doit être en excès dans (2) pour que l'on puisse remonter à la quantité de matière de glucose par le titrage : il reste donc des ions IO₃⁻ dans l'état final de (2)

- IO₃⁻ restant réagit avec I⁻ (formé par (1) et (2), en excès par rapport à IO₃⁻) et est totalement consommé pour conduire à I₂ selon (3)
- I₂ est titré par le thiosulfate de sodium selon (4)

A l'équivalence du titrage (4), les réactifs ont été introduits dans les proportions stoechiométriques. La quantité de matière de diiode titrée vaut donc : $n_{\rm I_2,titré} = \frac{n_{\rm S_2O_3^2-,vers\acute{e}}}{2} = \frac{c_{\rm thio}V_{\rm eq}}{2}$.

Des tableaux d'avancement des transformations (1) à (3) nous permettent de remonter à la quantité de matière initiale de glucose.

(mol)	3 I ₂	+ 6 HO ⁻	= 5 I ⁻	+ IO ₃ ⁻	+ 3 H ₂ O
t = 0	$cV_{ m I_2}$	excès	0	0	excès
t	$cV_{\mathrm{I}_2} - 3\xi_1$	excès	5ξ1	ξ1	excès

$$cV_{I_2} - 3\xi_1 = 0$$
 d'où : $\xi_1 = \frac{cV_{I_2}}{3}$

(mol)	3 glucose	+ IO ₃ ⁻	$= 3 C_6 H_{12} O_7$	+ I ⁻	+ 3 H ₂ O
t = 0	$n_{\rm g}$	$\frac{cV_{\mathrm{I}_2}}{3}$	0	$\frac{5cV_{I_2}}{3}$	excès
t	$n_{\rm g}-3\xi_2$	$\frac{cV_{_{\mathrm{I}_2}}}{3}\!-\!\xi_2$	$3\xi_2$	$\frac{5cV_{I_2}}{3} + \xi_2$	excès

On a donc:
$$n_g - 3\xi_2 = 0$$
 d'où: $\xi_2 = \frac{n_g}{3}$ et $n_{IO_3^-, \text{ restant}} = \frac{cV_{I_2}}{3} - \xi_2 = \frac{cV_{I_2}}{3} - \frac{n_g}{3}$.

(mol)	6 H ⁺	+ 5 I ⁻	+ IO ₃ ⁻	$= 3 I_2$	+ 3 H ₂ O
t = 0	excès	excès	$n_{{\rm IO}_3^-, {\rm restant}}$	0	excès
t	excès	excès	$n_{\mathrm{IO}_{3}^{-}, \mathrm{restant}}$ - ξ_3	$3\xi_3$	excès

 $n_{\text{IO}_3^-, \text{ restant}} - \xi_3 = 0$ d'où $\xi_3 = n_{\text{IO}_3^-, \text{ restant}} = \frac{cV_{\text{I}_2}}{3} - \frac{n_{\text{g}}}{3}$ et la quantité de matière de diiode formée vaut :

$$n_{\rm I_2} = 3\xi_3 = cV_{\rm I_2} - n_{\rm g} = \frac{c_{\rm thio}V_{\rm eq}}{2}.$$

D'où:
$$n_{\rm g} = cV_{\rm I_2} - \frac{c_{\rm thio}V_{\rm eq}}{2}$$
.

La concentration molaire en glucose de la solution (S1) vaut : $c_{g,S_1} = \frac{n_g}{V_g}$, celle du jus d'orange

vaut
$$c_{g} = 5c_{g,S_{1}} = \frac{5}{V_{g}} \left(cV_{I_{2}} - \frac{c_{thio}V_{eq}}{2} \right)$$
.

La concentration massique vaut donc : $c_{\text{m,g}} = c_{\text{g}} M_{\text{g}} = \frac{5M_{\text{g}}}{V_{\text{g}}} \left(cV_{\text{I}_2} - \frac{c_{\text{thio}} V_{\text{eq}}}{2} \right)$

AN:
$$c_{\text{m,g}} = \frac{5 \times 180}{0,020} \left(5,00 \cdot 10^{-2} \times 0,020 - 0,100 \times \frac{8,8 \cdot 10^{-3}}{2} \right) = 25,2 \text{ g} \cdot \text{L}^{-1}.$$