$\operatorname{DS-1}$ (CCINP-e3a) - Barème

	7	G G	44
Connaissance du cours			
Quantité de questions traitées			
Détail de la rédaction			
Rigueur de la rédaction			
Soin de la rédaction			
Commentaires pertinents			

	Problème 1 : R.P Détermination d'une inductance	élève	prof	max
Stannannian	• Identification des grandeurs pertinentes $R, L, r, e, s, \omega, \omega_c, f, \tau$			1.5
S'approprier	\bullet Schéma du circuit \bullet Prise en compte de la résistance interne r de la bobine			
Analyser	• Utilisation d'une loi des mailles ou d'un PDT			0.5
Réaliser	• Résolution de l'équation différentielle			1.5
Realisei	\bullet Expression théorique de τ \bullet Expression de L			
	• $L \simeq 40~mH$ • Ordre de grandeur cohérent avec TP			2
Valider	• Retrouver la valeur de $r \simeq 9.5\Omega$			
	\bullet Utilisation du régime sinus. avec amplitude $\underline{\operatorname{et}}$ phase pour vérifier les valeurs			
Communiquer	• Clarté de la rédaction			0.5
	Total			6

	Problème 2 : Un analyseur de Fourier très simplifié	élève	prof	max
Q.I.1	• Def. linéarité avec C.L.			0.5
	• (a) Filtre 1 linéaire avec justification • passe-bas • $f_c \simeq 3 \ kHz$			3
Q.I.2	• (b) Filtre 2 passe-bande linéaire • $f_0 \simeq 3 \ kHz$			
	• Filtre 3 non linéaire car apparitions de nouvelles fq.			
Q.II.1	\bullet RC passe-bas et CR passe-haut			0.5
Q.II.2	• P.D.T. • fonctions de transfert			1
	• $G_{dB} = f(log(\omega/\omega_0))$ et $\varphi = f(log(\omega/\omega_0))$ • BF et HF cohérents			3
Q.II.3	\bullet Pentes à $\pm 20~dB/dec$ \bullet limites de phase OK			
	\bullet Pulsation de coupure à $-3~dB$ en $0~\bullet$ mention du second filtre CR			
	• (a) Filtre 1 dérivateur en BF et pas de modif en HF			3
Q.II.4	• passe-haut • $f_c \simeq 200 Hz$			
Q.11.4	• (b) Filtre 2 intégrateur en HF et pas de modif en BF			
	• passe-bas • $f_c \simeq 200 Hz$			
Q.III.1	• GBF, Masse, entrées CH1 et CH2 de l'oscillo.			0.5
Q.III.2	\bullet On fait varier f			0.5
Q.III.3	• Théorème de Fourier • filtre linéaire			1
Q.III.4	• P.D.T. avec Z_{eq} • $H_0 = \frac{1}{2}$ • $\omega_0 = \frac{1}{\sqrt{LC}}$ • $Q = \frac{R}{2}\sqrt{\frac{C}{L}}$			2
	• $\omega_c \operatorname{tq} G(\omega_c) = \frac{G_{max}}{\sqrt{2}}$			2.5
Q.III.5	• Pas d'oubli du \pm quand passage à la racine pour trinôme			
	• Résolution des trinômes • solutions positives seulement • $\Delta \omega = \frac{\omega_0}{Q}$			
Q.III.6	• $G(\omega)$ et $\varphi(\omega)$ • Gain linéaire en BF et hyperb. en HF • Phase de $\frac{\pi}{2}$ à $-\frac{\pi}{2}$			1.5
Q.IV.1	• Harmoniques			0.5
	$ullet$ Filtre très sélectif car $Q\gg 1$ $ullet$ signal purement sinusoïdal			2.5
Q.IV.2	• $s(t) = \frac{E}{\pi} cos(2\pi f_0 t)$ • courbe avec amplitude $\pm \frac{E}{\pi}$			
·	• axe temporel gradué avec T_0			
O IV 0	• $C = \frac{Q}{\pi f} = 2.1 \ \mu F$ • $L = \frac{R}{4\pi O f} = 1.3 \ mH$ • valeurs raisonnables			2
Q.IV.3	• GBF et oscilloscope $\Rightarrow 50 \Omega \ll R \ll 1 M\Omega$			
Q.IV.4	\bullet Modification de f_0 en changeant L et/ou C			1
~.1 V · 1	\bullet R inchangé pour garder le même facteur de qualité			
	Total			25

	Problème 3 : Chasse au plomb (CCINP-MP-2017)	élève	prof	max
Q.1	• PFD au plomb dans $\mathcal{R}_{galil\acute{e}en} \Rightarrow \frac{d\overrightarrow{v}}{dt} + \frac{\rho_a S C_D}{2m} v \overrightarrow{v}$ • $ \overrightarrow{F}_D (t=0) \ll m\overrightarrow{g} \Rightarrow v_0 \ll v_\infty = \sqrt{\frac{2mg}{\rho_a \pi R^2 C_D}}$			0.5
$\mathbf{Q.2}$	$\bullet \overrightarrow{F}_D (t=0) \ll m\overrightarrow{g} \Rightarrow v_0 \ll v_\infty = \sqrt{\frac{2mg}{\rho_\sigma \pi R^2 C_D}}$			0.5
Q.3	• Projection PFD sans frottements $\Rightarrow m\ddot{X} = 0$ et $m\ddot{Z} = -mg$			0.5
Q.4	• Deux intégrations avec C.I. $\Rightarrow X = v_0 cos(\theta_0) t$ et $Z = -\frac{gt^2}{2} + v_0 sin(\theta_0) t$			0.5
Q.5	• Parabole • $Z = -\frac{g}{2} \left(\frac{X}{v_0 cos(\theta_0)} \right)^2 + X tan(\theta_0)$			1
Q.6	• Portée $X_M \neq 0$ lorsque $Z = 0 \Rightarrow X_M = \frac{v_0^2}{q} sin(2\theta_0)$			1.5
Q. 0	• Hauteur max H_M tq $\dot{Z}=0$ pour $t_1=\frac{v_0 \sin(\theta_0)}{q}$ • $H_M=H(t_1)=\frac{v_0^2 \sin^2(\theta_0)}{2q}$		'	'
Q.7	• Portée maximale si $\frac{dX_M}{d\theta_0} = 0$, soit $\theta_0 = \frac{\pi}{4}$			0.5
<u> </u>	• Régression arithmétique proposée pour les diamètres, même incorrecte			3.5(+
	• $R_k = 2 - (k - 1) \times 0.125$ (en mm)		I.	
	• Calcul de <i>rho</i> avec $m = \rho \times \frac{4}{3}\pi R^3$ • $m_5 = 0.16$ g			
$\mathbf{Q.8}$	• Portée $X_M = 15 \ km$ id. pour les 3 plombs • $H_M = 3.7 \ km$ pour les 3 plombs			
	• BONUS si commentaire sur les ordres de grandeurs (semblent grands!)			
	• BONUS si commentaire en lien avec les frottements (valeurs + faibles et \neq)			
	• $v_{\infty,5} = 29 \ m.s^{-1}$			
0.0	• Doc.1 avec pb 5 de diamètre 3 $mm \Rightarrow$ portée réelle 300 m et non 15 km!			1
Q.9	• Autre problème : $v_0 \ll v_\infty$ pas du tout vérifié!			
Q.10	• $v_0 \gg v_\infty \Rightarrow m\overrightarrow{g} \ll \overrightarrow{F}_D $: pesanteur négligeable			0.5
	• PFD $\Rightarrow m \frac{d\overrightarrow{v}}{dt} = -\frac{\rho_a S C_D}{2} v \overrightarrow{v}$			2.
Q.11				
Q.11	• Dans la première phase \overrightarrow{v} et $\overrightarrow{d} = \frac{d\overrightarrow{v}}{dt}$ sont colinéaires à X' • $v = \frac{dX'}{dt}$ • $\frac{d\overrightarrow{v}}{dt} = \frac{g}{v_{\infty}^2} \frac{dX'}{dt} \overrightarrow{v}$ • or $\frac{d\overrightarrow{v}}{dt} = \frac{d\overrightarrow{v}}{dX'} \frac{dX'}{dt}$ donc $\frac{d\overrightarrow{v}}{dX'} = -\frac{1}{D} \overrightarrow{v}$			
0.10			I	
Q.12	• Analyse dimensionnelle \Rightarrow $[D] = L$			0.8
Q.13	• Intégration avec C.I. $\Rightarrow \overrightarrow{v} = \overrightarrow{v}_0 e^{-\frac{X'}{D}}$			1
	ullet D est la distance pour laquelle la vitesse est divisée par e			
	$\bullet D = 86 \ m \bullet \frac{v_0}{v_\infty} = 13 \bullet d = D \ln \left(\frac{v_0}{10v_\infty} \right) \bullet d = 23 \ m$			4(+0
$\mathbf{Q.14}$	• $v_u = v_0 e^{-\frac{X_1}{D}}$ avec $X_1 = 40 \ m \cdot v_u = 240 \ m.s^{-1} \cdot E_c = \frac{1}{2} m v_u^2 \cdot E_c = 4.6 \ J$			
	• BONUS si commentaires sur les AN			
Q.15	• Portée utile = distance maximale dans la direction X' (utile pour la chasse)			0.8
	• Même $E_c \Rightarrow 6$ plombs n°5 ou 60 plombs n°10 pour tuer un canard			1
Q.16	• Portée utile correspond à d			
	• Portée utile de 15 à 30 m similaire à Doc. 1 (35 à 40 m)			2
	• ρ plus faible $\Rightarrow R, m, v_{\infty}, D, v_u$ plus faibles $\Rightarrow E_c$ plus faible			_
Q.17	• Il faut prendre R plus grand pour compenser la diminution de E_c			
	• Danger si la grenaille s'agglutine car R plus grand \Rightarrow portée d plus grande!			
Q.18	• Dernière phase : chute libre avec frottements			0.8
	• Vitesse verticale et $\overrightarrow{v} = -v \overrightarrow{k}$ dans cette $3^{\grave{e}me}$ phase			2
	• PFD selon la verticale $\Rightarrow \frac{dv}{dt} + \frac{\rho_a SC_D}{2m} v^2 = 0$			
Q.19	With the limit of the depth of $\frac{dv}{dt} = \frac{2m}{2m} = \frac{1}{2m}$			
	• Vitesse limite lorsque $\frac{dv}{dt} = 0$, soit $\overrightarrow{v}_{\infty} = -\sqrt{\frac{2mg}{\rho_a SC_D}} \overrightarrow{k}$			
	• "Mur aérodynamique" car vitesse limitée par la force de frottement de l'air	1	I	1 -
Q.20	• Vitesse faible dans cette seconde phase $(v < v_{\infty})$			1
	• Force de frottement négligeable ⇒ "phase gravitaire" (chute libre)		I	T -
	• Pour $\theta_0 = 16^{\circ}$: $X_{M,n^{\circ}1} = 264 \ m$, $X_{M,n^{\circ}5} = 217 \ m$, $X_{M,n^{\circ}10} = 139 \ m$			3
Q.21	• Avec Doc.1: $X_{M,n^{\circ}1} = 400 \ m, \ X_{M,n^{\circ}5} = 300 \ m, \ X_{M,n^{\circ}10} = 175 \ m$			
- ▼	• Valeurs sup. pour Doc.1, mais bon ODG • $\theta_0 = 16^\circ$ pas forcément vérifié			
	• Valeurs du Doc.1 qualifiées de "grossières" • Mieux si Doc.1 surestime!			

	Problème 3 (Suite)	élève	prof	max
Q.22	• Plomb n° $\{1,5,10\}$: $log\left(\frac{v_0}{v_\infty}\right) = \{2.0, 2.2, 2.5\} \Rightarrow \theta_{max} = \{18^\circ, 17^\circ, 16^\circ\}$			$0.5_{(+0.5)}$
2.22	• BONUS si valeurs θ_{max} cohérentes avec $\theta_0 = 16^{\circ}$ dans Q.21			'
	• On lit $X_{M,n^{\circ}1} = 345 \ m$, $X_{M,n^{\circ}5} = 265 \ m$ et $X_{M,n^{\circ}10} = 170 \ m$			1.5
Q.23	• Valeurs plus proches du Doc.1			
	• Valeurs toujours inférieures au Doc.1 : portée surestimée = sécurité!			
	Total			30

TOTAL UI
