DS-1bis (Centrale-Mines) - Barème

	9	4	44
Connaissance du cours			
Quantité de questions traitées			
Détail de la rédaction			
Rigueur de la rédaction			
Soin de la rédaction			
Commentaires pertinents			

	Problème 1 : Oscillateurs mécaniques - Millenium Bridge (Mines-MP-2016)	élève	prof	max
	• Eq. diff. : $m\ddot{x} = -mg - k(x - \ell_0) - \alpha \dot{x}$			3(+0.5)
	• \tilde{x} comme position d'eq. • expression $\tilde{x} = \ell_0 - \frac{mg}{k}$			
$\mathbf{Q.1}$	• BONUS si cohérent car $\tilde{x} < \ell_0$ car ressort écrasé			
	• Eq. diff. : $\ddot{X} + \frac{\alpha}{m} \dot{X} + \frac{k}{m} X = 0$ • Expression de $\xi = \frac{\alpha}{2\sqrt{mk}}$			
	\bullet ω_0 pulsation propre et ξ coefficient d'amortissement			
	• $\xi = 0$ correspond à un O.H. • $X(t) = X_0 cos(\omega_0 t) + \frac{V_0}{\Omega_0} sin(\omega_0 t)$			$4_{(+0.5)}$
	• $0 < \xi < 1$ correspond au régime pseudo-périodique • $\omega = \omega_0 \sqrt{1 - \xi^2}$			
	• $X(t) = e^{-\xi\omega_0 t} \left(A\cos(\omega t) + B\sin(\omega t) \right)$			
$\mathbf{Q.2}$	ullet Utilisation des C.I. pour déterminer A et B			
	• $X(t) = e^{-\xi\omega_0 t} \left(X_0 \cos(\omega t) + \frac{V_0 + \xi\omega_0 X_0}{\omega} \sin(\omega t) \right)$			
	BONUS si amorti donc plus réaliste que O.H.			
	• Vent diminue amortissement et instabilité possible si $\xi < 0$ (amplification)			
	• PFD avec oscillations forcées • $\ddot{Y} + 2\xi\omega_0\dot{Y} + \omega_0^2Y = -\frac{F_1}{m}\cos(\omega t)$			$2.5_{(+1)}$
\cap 2	• signe "-" devant F_0 et F_1 montrant que la charge est orientée vers le bas			
Q.3	• Passage en complexe • $\underline{H}(\omega) = \frac{-1/\omega_0^2}{1+2i\varepsilon\Omega-\Omega^2}$			
	• BONUS si passe-bas du second ordre • BONUS si $H_0 = -\frac{1}{\omega_0^2}$ et $Q = \frac{1}{2\xi}$			
0.4	• Résonance si $\xi < \frac{1}{2}$ • Démo avec étude de fonction • $(y_1 - y_2)\sqrt{1 - 2\xi^2}$			2
Q.4	• Avec amortissement faible $\xi \ll 1 \Rightarrow \underline{H}(\omega_r) \approx \frac{1}{2\omega_0^2 \xi}$			
0.7	• Lecture 9 $dB \bullet \xi \simeq 0.18 \bullet \text{BONUS si } \xi \ll 1 \text{ OK}$			2(+0.5)
Q.5	• Lecture $\omega_r \simeq 12.2 \ rad.s^{-1}$ • Comme $\xi \ll 1, \ \omega_0 \simeq 12.2 \ rad.s^{-1}$			
Q.6	• Il faut éviter la résonance lors d'une excitation sinusoïdale			0.5
Q.7	Accéléromètre (podomètre, montre, portable)			0.5
	• Exploit. fig. $2: f_{marche} \simeq 2 \ Hz$ • signal non sinusoïdal et \exists harmoniques			6.5
	• Ech. par le capteur • duplication/enrichissement du signal • $ nf_e \pm f_{marche} $			
$\mathbf{Q.8}$	$\bullet f_e = \frac{1}{T_e} = \frac{N-1}{t_{\text{max}} - t_{\text{min}}} \bullet \text{ valeurs de } f_e : \{1.7, 11.5, 3.3, 33\} \ Hz$			
	• Enoncé critère de Shannon • spectres 1 et 3 : Non • 2 : moyen • 4 : vérifié			
	\bullet Harmoniques marche : 2, 4, 6, 8, 10 Hz \bullet cohérent avec marche réelle			
Q.9	• $f_{resonance} \simeq f_{marche} !$ • Modification \Rightarrow amortissement reste faible			1.5
્ય. ક	• Dédoublement du pic permettant de diminuer la résonance			
	Total			22.5

	Problème 2 : Filtrage linéaire (CCINP-PSI-2003)	élève	prof	max
Q.1	• Pas de composante continue car $\underline{H}(j\omega) \underset{\omega \to 0}{\longrightarrow} 0$			0.5
	• Sélection d'une composante du spectre du signal triangulaire			1.5(+0.5
Q.2	• Sélection du fondamental $\omega_0 = \omega_1 \bullet Q$ grand (ou Δf faible)			
	• BONUS si schéma avec spectre			
Q.3.a)	• On lit $T_1 = T_0 = 250 \ \mu s$ • $f_0 = 4 \ kHz$ et $\omega_0 = 2.5.10^4 \ rad.s^{-1}$			1
	• $V_s = \frac{V_0}{2}G(0) + \frac{2V_0}{\pi} \sum_{k=0}^{\infty} G[(2k+1)\omega_1] \frac{\sin[(2k+1)\omega_1t + \varphi((2k+1)\omega_1)]}{2k+1}$			4
	• Sélection du fondamental avec le filtre $\Rightarrow V_s = G(\omega_0) \frac{2V_0}{\pi} sin \left[\omega_0 t + \varphi(\omega_0)\right]$			
Q.3.b)	$\bullet G(\omega_0) = H_0 \text{ et } \varphi(\omega_0) = 0 \bullet V_s(t) = H_0 \frac{2V_0}{\pi} sin(\omega_0 t)$			
	• Lecture de la composante continue $Offset = 0.5 \ V \bullet V_0 = 2 \times Offset = 1 \ V$			
	• Lecture amplitude $V_s: A_s = 6 \ V \bullet H_0 = \frac{\pi A_s}{2V_0} = 9.4$			
	• Lecture $T_1 = 25 \ \mu s \Rightarrow \omega_1 = 2.5 \cdot 10^5 \ rad.s^{-1}$			1.5
Q.4.a)	• $\omega_1 = 10\omega_0 \Rightarrow \omega \gg \omega_0$ pour toutes les composantes du créneau			
	$\bullet \underline{H}(j\omega) \underset{\omega \gg \omega_0}{\sim} \frac{H_0\omega_0}{jQ\omega} \propto \frac{1}{j\omega} \Rightarrow \text{Intégrateur}$			
	• Pour $\omega \gg \omega_0$, $\underline{H}(j\omega) = \frac{V_s}{V_e} \sim \frac{H_0\omega_0}{jQ\omega} \Rightarrow \frac{dV_s}{dt} = \frac{H_0\omega_0}{Q}V_e(t)$			3(+0.5)
	• Lecture sur une demi période de V_e et pente de V_s			l
Q.4.b)	• $V_e = 2 V$ car composante continue ne vérifie pas la condition HF			
	\bullet $\frac{H_0\omega_0}{Q} = \frac{1}{V_s} \frac{dV_s}{dt} = 48.10^3 \ s^{-1} \bullet \text{ Unit\'e correcte en } s^{-1} \text{ ou } Hz \text{ ou } rad.s^{-1}$			
	\bullet $Q = 4.9$ \bullet BONUS si $Q \gg 1$ cohérent avec sélection 1 seule sinusoïde en fig7			
	Total			11.5

	Problème 3 : Oscillateur à résistance négative	élève	prof	max
Q.I.1	$\bullet i = \frac{u_{\mathcal{D}} - u_S}{R_1} \bullet \text{P.D.T. } v_+ = \frac{R_2}{R_1 + R_2} u_S$			2.5
Q.1.1	• Régime linéaire $v_+ = v = u_D$ • $u_D = -R_2 i$ • $I_m = \frac{U_{sat}}{R_1 + R_2}$ si $u_S = -U_{sat}$			
Q.I.2	$\bullet \ u_{\mathcal{D}} = R_1 i - U_{sat}$			0.5
Q.I.3	$\bullet \ u_{\mathcal{D}} = R_1 i + U_{sat}$			0.5
Q.I.4	• Abscisse $\pm \frac{U_{sat}}{R_1}$ • Ordonnée $\pm U_{sat} \frac{R_2}{R_1 + R_2}$			1
Q.II.1	• eq. diff. avec L.D.M. • $\omega_0 = \frac{1}{\sqrt{LC}}$ • $\xi = \frac{R-R_2}{2}\sqrt{\frac{C}{L}}$			1.5
	• Continuité de i_{bobine} • $i(t=0^+)=i(t=0^-)=0$ • $\frac{\mathrm{d}i}{\mathrm{d}t}(t=0)=\frac{U_0}{L}$			3.5
Q.II.2	• Eq. caractéristique et discriminant • régime pseudo-périodique			
	• $i(t) = e^{-\xi\omega_0 t} \left(A \cos\left(\omega_0 t \sqrt{1-\xi^2}\right) + B \sin\left(\omega_0 t \sqrt{1-\xi^2}\right) \right)$			
	• C.I. $\Rightarrow i(t) = \frac{U_0}{L\omega_0} \frac{e^{-\xi\omega_0 t}}{\sqrt{1-\xi^2}} \sin\left(\omega_0 t \sqrt{1-\xi^2}\right)$			
Q.II.3	• Si $U_0 = 0$, i reste nul.			0.5
Q.II.4	• Amplitude croissante si $\xi < 0$, soit si $R_2 > R$			0.5
Q.II.5	$\bullet \ \xi = -0.1 \bullet T_0 = 10 \ \mu s$			1
Q.II.6	• Oscillations d'amplitudes croissante • enveloppe exponentielle			2.5
	• Pseudo-période $\simeq T_0 = 10 \ \mu s$ • car $Q = \frac{1}{2\xi} = 10 \gg \frac{1}{2}$ • valable si $ i(t) < I_m$			
Q.II.7	• u_S sature • $\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \frac{R_1 + R}{L} \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{LC} i = 0$			1
	• Pour $ i(t) < I_m$, résistance négative (2)			1.5
Q.II.8	• pour $i(t) > I_m$, saturation haute (3)			
	• Pour $i(t) < -I_m$, saturation basse (1)			
Q.II.9	• Oscillations quasi-sinusoïdales • Lecture $T \simeq T_0 = 10 \ \mu s$ • $f = \frac{1}{T} = 100 \ kHz$			3
	• $i_{max} = 1.24 I_m$ • A.N. $I_m = 4.6 \ mA$ • donc $i_{max} = 5.7 \ mA$			
Q.II.10	• $u_{\mathcal{D}}$ max pour $i = -I_m \bullet u_{\mathcal{D},max} = U_{sat} - R_1 I_m \bullet u_{\mathcal{D},max} = 1.6 V$			1.5
	Total			21

TOTAL 55