$\operatorname{DS-2bis}$ (Centrale-Mines) - Barème

	7	Ja	44
Connaissance du cours			
Quantité de questions traitées			
Détail/Rigueur de la rédaction			
Soin de la rédaction			
Commentaires pertinents			

Problème 1 : Pendule de Foucault (d'après ENS-PC-2022)

	Problème 1 : Pendule de Foucault (d'après ENS-PC-2022)	élève	prof	max
	• Def. du poids : $\overrightarrow{P} = \overrightarrow{F}_g + \overrightarrow{F}_{ie}$			3
	$\bullet \vec{F}_g = -\frac{GM_T m}{R_T^2} \vec{e}_z \bullet \vec{F}_{ie} = m\Omega^2 R_t (\cos^2 \lambda \vec{e}_z - \cos \lambda \sin \lambda \vec{e}_y)$			
Q.1	$\bullet \frac{\Omega^2 R_t^3}{GM_t} \simeq 3 \times 10^{-3} \ll 1 \bullet \alpha \simeq \frac{\Omega^2 R_T cos \lambda sin \lambda}{GM_T} = 1, 5 \times 10^{-3} rad \ll 1$			
	• schéma = BONUS			
Q.2	• $\mathcal{R}_{ter} \simeq \text{galil\'een} \bullet // \overrightarrow{e}_r : -m\ell\dot{\alpha}^2 = mg\cos\alpha - T$ • $// \overrightarrow{e}_\alpha : m\ell\ddot{\alpha} = -mg\sin\alpha$			1.5
0.0	• Harmonique si $\alpha \ll 1$ • $\omega_0 = \sqrt{\frac{g}{\ell}}$ • $T \simeq 15s$			1.5
Q.3	• BONUS si valeur commentée (assez long normal car grand pendule)			
Q.4				1,5
$\overline{\mathrm{Q.5}}$	• $\Delta z \simeq \frac{\ell \alpha_{max}^2}{2}$ • $\Delta x \simeq \ell \alpha_{max}$ • $\Delta z \ll \Delta x \Rightarrow \text{horizontal}$ • $\Omega = \frac{2\pi}{T_{sid}} \simeq 7 \times 10^{-5} rad.s^{-1} \ll \omega_0 = \frac{2\pi}{T}$			0.5
Q.6	$\bullet \overrightarrow{e}_3 = \cos \lambda \overrightarrow{e}_y + \sin \lambda \overrightarrow{e}_z \bullet \text{composante selon } \overrightarrow{e}_z \text{ négligée}$			2
Q. 0	• $\vec{F}_{ic} = -2m\vec{\Omega} \wedge \vec{v} = 2m\Omega \left[\sin(\lambda) \dot{y} \overrightarrow{e}_x - \sin(\lambda) \dot{x} \overrightarrow{e}_y \right]$ • on pose $\tilde{\Omega} = \Omega \sin(\lambda)$.			
Q.7	$\bullet \ddot{u} + 2i\tilde{\Omega}\dot{u} + \omega_0^2 u = 0$			1.5
4	• $u = A \exp(r_+ t) + B \exp(r t)$ • avec $r_{\pm} = i \left(\pm \sqrt{\omega_0^2 + \tilde{\Omega}^2} - \tilde{\Omega} \right)$			
Q.8	• $u = x_0 \frac{[r_+ \exp(r t) - r \exp(r_+ t)]}{r_+ - r}$ • $\tilde{\Omega} \ll \omega_0 \Rightarrow r_\pm \simeq i \left(\pm \omega_0 - \tilde{\Omega}\right)$ • et $u \simeq x_0 \cos(\omega_0 t) \exp(-i\tilde{\Omega}t)$			0.5
	• $\tilde{\Omega} \ll \omega_0 \Rightarrow r_{\pm} \simeq i \left(\pm \omega_0 - \tilde{\Omega} \right)$ • et $u \simeq x_0 \cos(\omega_0 t) \exp(-i\tilde{\Omega}t)$			3
$\mathbf{Q.9}$	• $\vec{OM} = x_0 \cos(\omega_0 t) \left[\cos(\tilde{\Omega}t) \overrightarrow{e}_x - \sin(\tilde{\Omega}t) \overrightarrow{e}_y \right] = x_0 \cos(\omega_0 t) \vec{u}(t)$			
4.0	• \vec{u} unitaire et tournant à $\tilde{\Omega} \ll \omega_0$ • sens indirect par rapport au vecteur \overrightarrow{e}_z			
	• pendule oscillant à ω_0 en tournant.			
Q.10	$\bullet \ \psi = -\tilde{\Omega}T = -2\pi \sin(\lambda) \ \bullet \ \psi \simeq -250^{\circ}$			1.5
4.1 0	• oscillations qui bouclent en 24h en $\lambda = 0$ (équateur)			
0.11	• ℓ grande ⇒ vitesse faible ⇒ frottements plus faibles			1.5
Q.11	 • m grande ⇒ frottements faibles par rapport au poids • "-" de frottements ⇒ oscille longtemps ⇒ rotation du plan d'oscillation 			
	visible			
O 10	• impossible de s'orienter trop d'amortissement			1.5
Q.12	\bullet orientation uniquement selon λ \bullet Observation longue			
	Total	-		19.5

	PC-2022)	élève	prof	max
Q.1	$\bullet [G] = L^3.M^{-1}.T^{-2}$ et unité en $m^3.s^{-2}.kg^{-1}$			0.5
Q.2	• TMC avec force centrale $\Rightarrow \overrightarrow{L}_O = \overrightarrow{cste}$			0.5
Q.3	• Mouvement plan d'après produit vectoriel • $C = \frac{L_O}{m}$ constante des aires			1
0.4	• PFD dans $\mathcal{R}_{h\acute{e}lio}$ galiléen • $v=\sqrt{\frac{GM_s}{R}}$			2
$\mathbf{Q.4}$	$\bullet v_T = 2.98 \times 10^4 m.s^{-1} \bullet v_M = 2.42 \times 10^4 m.s^{-1}$			
Q.5	$\bullet E_m = \frac{-GmM_s}{2R}$			0.5
Q.6	$\bullet \ v = \frac{2\pi R}{T} \bullet T = 2\pi \sqrt{\frac{R^3}{GM}}$			1
Q.7	• Doc réponse : trajectoire elliptique • tangent aux trajectoires Terre/Mars			1
-	• trajectoire elliptique avec $a = \frac{a_M + a_T}{2}$ • et $E_m = \frac{-GmM_s}{a_M + a_T}$			3
$\mathbf{Q.8}$	• Au niveau de la Terre $E_m = \frac{mV_T'^2}{2} - \frac{GmM_s}{ax}$ • or $\frac{GM_s}{ax} = V_T^2$ d'après Q.4			
	• $V_T' = V_T \sqrt{\frac{2a_M}{a_T + a_M}}$ • $\Delta V_T = 2.93 \times 10^3 m.s^{-1}$			
0.0	• demi-ellipse \Rightarrow demi-période • $\Delta t = \frac{T}{2} = \pi \sqrt{\frac{a^3}{GM_s}}$			2
Q.9	• $\Delta t = 2.23 \times 10^7 s = 259 jours$ • BONUS $\Delta t < T_M = 687 jours$			<u> </u>
Q.10	• pour le vaisseau $\theta_v(t=0) = \theta_T(t=0)$ • $\theta_v(\Delta t) - \theta_v(t=0) = \pi$			3
Q.10	• et pour Mars $\theta_M(\Delta t) - \theta_T(t=0) = \pi \bullet \theta_M(\Delta t) - \theta_M(t=0) = \Omega_M \Delta t = \Gamma$			
	$\left rac{V_M}{a_M}\Delta t ight $			
	• $\alpha_0 = \theta_M(t=0) - \theta_T(t=0) = \pi - \Omega_M \Delta t$ • $\alpha_0 = 0.775 rad = 44.4^{\circ}$			
Q.11	• le vaisseau parcourt toute l'ellipse • $\Delta t' = T = 518 jours$			2.5
	• la Terre fait plus d'un tour • $\theta_T(\Delta t') = 360 + 151^\circ$ • le vaisseau rate la Terre • Terre tourne plus vite \Rightarrow plus que π à parcourir pour la Terre • pendant Δt			2
Q.12	(idem avant)			
Q.12	$\bullet \ \alpha_1 = \frac{2\pi\Delta t}{T_T} \bullet \alpha_1 = \pi + 1.32rad = 180 + 75^{\circ}$			
	• Angle entre Mars et la Terre : $\alpha(t) = \alpha_0 + \frac{2\pi}{T_M}t - \frac{2\pi}{T_T}t$			3
	• fin de la mission en t_1 to $\alpha(t_1) = \alpha_1 + 2n\pi$ • pour $n = -1$, $t_1 = 712jours$			
Q.13	• durée de la mission sur Mars $\Delta t_M = t_1 - \Delta t = 453 jours$			
	• durée totale de la mission sur Mars $\Delta t_{tot} = t_1 + \Delta t = 970 jours$			
	• période d'attente $\Delta t_{attente} = \frac{2\pi}{\omega_T - \omega_M} = 779 jours$			
Q.14	• Doc réponse : angle de $\frac{3\pi}{4}rad$			0.5
Q.15	• comme $\Delta \overrightarrow{V_T}$ colinéaire à \overrightarrow{V}_T , $\overrightarrow{V_v} \perp$ axe Soleil-Terre • alors $\dot{r} = 0$ et $r_P = a_T$.			1
	•Doc réponse : tracé de l'ellipse			3.5
Q.16	$\bullet r(\theta = 0) = r_P = a_T = \frac{p}{1+e} \bullet r(\theta = \frac{3\pi}{4}) = a_M = \frac{p}{1-e/\sqrt{2}} \bullet e = 0.251$			
	• aphélie en $\theta = \pi$ • $r_A = \frac{p}{1-e}$ • $r_A = 1.67a_T$			
Q.17	• $2a = r_P + r_A = a_T \left(\frac{2}{1-e}\right)$ • $E_m = -G\frac{mM_s}{2a}$			2
Q.1.	$\bullet E_m = -mV_T^2 \frac{(1-e)}{2} \bullet \text{BONUS} : E_m < 0 \text{ car lié}$			
	• $E_m = -mV_T^2 \frac{(1-e)}{2}$ • BONUS : $E_m < 0$ car lié • En $r = r_P = a_T$, $E_m = \frac{1}{2}mV_T''^2 - \frac{GmM_s}{a_T}$			2
Q.18	• $V_T'' = V_T \sqrt{1 + e}$ • $V_T'' = 3.34 \times 10^4 m.s^{-1}$ • BONUS : $V_T'' > V_T$ car plus			
	grande dépense énergétique			
Q.19	$\bullet \ \Delta V_T'' = 3.53 \times 10^3 m.s^{-1} > 0$			0.5
Q.20	$\bullet \ C = \frac{L_O}{m} = a_T V_T''$			0.5
Q.21	$\bullet dt = \frac{r^2 d\theta}{C} \bullet \Delta t' = \frac{1}{C} \int_0^{3\pi/4} = r^2 d\theta$			2.5
	• $\Delta t' = \frac{a_T(1+e)^2}{V_T''} \times 2.15$ • $\Delta t' = 1.51 \times 10^7 s = 175 jours$			
	• transfert raccourci de $259 - 175 = 84jours$			
	Total			34.

	Problème 3 : Expérimenter avec un rouleau de scotch (d'après CCS-	élève	prof	max
	MP-2017)			
Q.1	$ullet$ $\mathcal{R}_{support}$ galiléen car translation rectiligne uniforme / \mathcal{R}_{ter} galiléen			0.5
Q.2	$\bullet \ \ell(t) = x_I(t) - x_L(t) \bullet \ell(t) = V_P t + \ell_0 - x_L(t)$			1
Q.3	• PFD à m dans $\mathcal{R}_{support}$ galiléen • équilibre $\Rightarrow f = -kV_P t$			2
Q.5	• non glissement tant que $ f < F_P • t < t_0 = \frac{F_P}{kV_P}$			
Q.4	$\bullet \overrightarrow{f} = -(1 - \epsilon)F_P \overrightarrow{u}_x \bullet \ddot{x}_L + \omega_0^2 x_L = \omega_0^2 V_p t - (1 - \epsilon) \frac{F_p}{m} \bullet \omega_0 = \sqrt{\frac{k}{m}}$			1.5
Q.5	\bullet $C_3 = \frac{\varepsilon F_p}{k} \bullet C_1 = -C_3 \bullet C_2 = -\frac{V_P}{\omega_0}$			1.5
	• En $t'=0$, c'est à dire $t=t_0$ • $\ell(0)-\ell_0=\frac{F_P}{k}$ • $\ell(0)-\ell_0=1mmm$			3.5
Q.6.a)	$\bullet \ v_L(0) = 0$			
	• Doc réponse : placement du point A • orientation • justification			
	ullet BONUS : placement du point B			
Q.6.b)	• Doc réponse A : "stick" entre C et $A \bullet t_1' \simeq \frac{3\pi}{2\omega_0} \bullet t_2' \simeq \frac{2.25\pi}{\omega_0}$			2
	• Doc réponse B : pas de "stick" car $C = A$			I .
0.6.0)	• Doc réponse A : "stick" correspond à $x = cste$ et $v_L = 0$ • ajout trait			1.5
Q.6.c)	temporel • ajout trait portrait de phase			
	Total			13.5

TOTAL		67.5