1 Thermodynamique chimique

À diverses températures T, on relève les valeurs correspondantes des enthalpies libres standard $\Delta_r G^{\text{o}}$ relatives aux réactions (1) et (2) :

$$\begin{array}{l} 4 \ \mathrm{Cu}_{(s)} + \mathrm{O}_{2(g)} = 2 \ \mathrm{Cu}_2\mathrm{O}_{(s)} & (1) \\ 2 \ \mathrm{Cu}_{(s)} + \mathrm{O}_{2(g)} = 2 \ \mathrm{Cu}\mathrm{O}_{(s)} & (2) \end{array}$$

Données:

T(K)	300	800
$\Delta_r G_1^{\text{o}} \text{ (kJ.mol}^{-1)}$	-300	-230
$\Delta_r G_2^{\text{o}} \text{ (kJ.mol}^{-1)}$	-260	-170

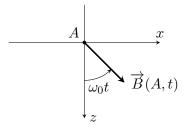
On suppose par ailleurs que $\Delta_r H^{\rm o}$ et que $\Delta_r S^{\rm o}$ sont indépendantes de T pour les deux réactions :

- 1) Déterminer $\Delta_r H_k^{\text{o}}$ et $\Delta_r S_k^{\text{o}}$ (k=1,2) pour les deux réactions.
- 2) Soit $CuO_{(s)} + Cu_{(s)} = Cu_2O_{(s)}$. Déterminer $\Delta_r G_3^o(T)$ pour cette réaction.
- 3) Soit 2 $Cu_2O_{(s)} + O_{2(g)} = 4 CuO_{(s)}$. Déterminer $\Delta_r G_4^o(T)$ pour cette réaction.

2 Principe du moteur asynchrone

I. Génération d'un champ magnétique tournant

On souhaite réaliser en un point A un champ magnétique tournant à la pulsation ω_0 tel que celui représenté sur la figure ci-dessous :



Il s'agit d'un champ magnétique de la forme :

$$\overrightarrow{B}(A,t) = B_0 \cos(\omega_0 t) \overrightarrow{e_z} + B_0 \sin(\omega_0 t) \overrightarrow{e_x}$$

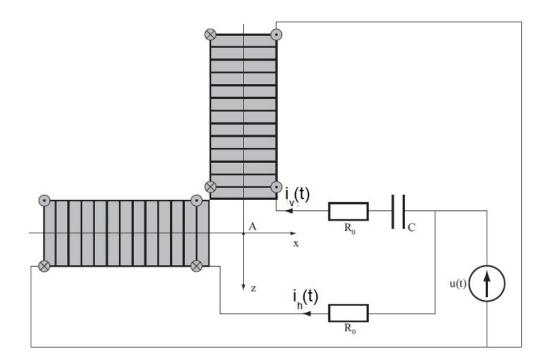
de norme B_0 constante.

Pour réaliser cela, on place deux bobines perpendiculairement l'une à l'autre, de façon à obtenir la configuration représentée sur la figure ci-dessous (page suivante). Le point A est placé à l'intersection de l'axe de symétrie des deux bobines. Chacune des deux bobines crée en A un champ magnétique dela forme :

$$\overrightarrow{B}_{1 \text{ ou } 2} = k i(t) \vec{e}_{x \text{ ou } z}$$

où k est une constante (la même pour les deux bobines), i(t) l'intensité du courant dans chaque bobine.

Ces deux bobines sont placées dans un circuit contenant deux résistances identiques R_0 et une capacité C. Le circuit est alimenté par une source idéale de tension de f.é.m. sinusoïdale $u(t) = U \cos(\omega_0 t - \pi/4)$.



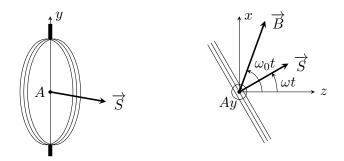
Chaque bobine est caractérisée par son inductance propre L et sa résistance interne R. En régime sinusoïdal forcé, la bobine verticale sur le schéma est parcourue par un courant sinusoïdal $i_v(t) = I_v \cos(\omega_0 t + \varphi_v)$ et la bobine horizontale (sur le schéma) par un courant sinusoïdal $i_h(t) = I_h \cos(\omega_0 t + \varphi_h)$.

1. Dessiner le schéma électrocinétique correspondant à ce circuit en y faisant figurer L et R.

2. Déterminer :

- a) La valeur de R_0 pour que le courant $i_h(t)$ soit en retard de $\pi/4$ sur la tension u(t).
- b) La valeur de C pour que le courant $i_v(t)$ soit en avance de $\pi/4$ sur la tension u(t).
- c) Application numérique : L=200 mH, R=0.5 Ω et $f_0=\omega_0/2\pi=100$ Hz. Calculer R_0 et C.
- d) Montrer que les amplitudes I_h et I_v sont identiques lorsque les conditions précédentes sont remplies.
- 3. Montrer que le champ magnétique total $\overrightarrow{B}(A,t)$ créé au point A par l'ensemble des deux bobines est un champ magnétique tournant (c'est à dire que l'extrémité de $\overrightarrow{B}(A,t)$ décrit un cercle) dont on précisera le sens de rotation.

II. Principe du moteur asynchrone



La rotation de (E) autour de l'axe (Ay) est repérée par l'angle $(\overrightarrow{e_z}, \overrightarrow{S}) = \beta(t)$. On va étudier dans cette partie une situation dans laquelle (E) est animée d'une vitesse angulaire constante ω , ce qui signifie que $\beta(t) = \omega t$.

On soumet cet enroulement au champ magnétique tournant de norme B_0 étudié dans la partie **I.** que l'on supposera uniforme sur toute la surface S des spires.

4. Déterminer la force électromotrice induite dans (E) par le champ magnétique tournant. En déduire que (E) est parcouru par un courant induit i(t) vérifiant l'équation différentielle :

$$L_s \frac{\mathrm{d}i}{\mathrm{d}t} + R_s i = \Phi_0 \Omega \sin(\Omega t)$$

où $\Omega = \omega_0 - \omega$. On donnera l'expression de la constante Φ_0 en fonction de N, S et B_0 .

5. On se place en régime sinusoïdal forcé. L'intensité du courant dans (E) est alors sinusoïdale de pulsation Ω et de la forme :

$$i(t) = \lambda \cos(\Omega t) + \mu \sin(\Omega t)$$

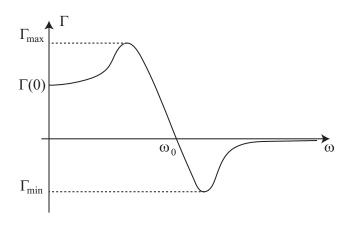
où λ et μ sont deux constantes.

Déterminer les expressions de λ et μ en fonction de Φ_0 , Ω , L_s et R_s .

- **6.** Donner l'expression du moment magnétique \overrightarrow{m} de l'enroulement (E). En déduire le moment des forces de Laplace $\overrightarrow{\Gamma}(t)$ exercé par le champ magnétique tournant.
- 7. En réalité le dispositif possède une grande inertie mécanique et la grandeur significative à considérer est la valeur moyenne $<\overrightarrow{\Gamma}>$ de $\overrightarrow{\Gamma}(t)$. Montrer que :

$$<\overrightarrow{\Gamma}> = \Gamma \overrightarrow{e_y} \text{ avec } \Gamma = \frac{\Omega R_s \Phi_0^2}{2(R_s^2 + L_s^2 \Omega^2)}$$

8. On donne ci-dessous l'allure du moment moyen Γ en fonction de la vitesse angulaire ω de (E).



Quelle est la plage de pulsations ω pour lesquelles ce moment est effectivement moteur?

9. Le mécanisme pivot n'est pas parfait et il exerce un moment mécanique résistant constant $\overrightarrow{\Gamma_r} = -\Gamma_r \overrightarrow{e_y} \ (\Gamma_r > 0)$ en raison de frottements. On suppose que :

$$\Gamma(0) < \Gamma_r < \Gamma_{\rm max}$$

À l'aide du théorème du moment cinétique et en ne considérant que le moment moyen pour les forces de Laplace, établir l'équation qui découle de la constance de ω . Utiliser le graphe précédent pour montrer qu'il n'y a alors que deux valeurs possibles ω_1 et ω_2 de la vitesse angulaire de rotation.

10. Étudier la stabilité de chacun de ces deux régimes de fonctionnement.