Corrigé du DM n°11 - Thermochimie - Électromagnétisme

1 Thermochimie

À diverses températures T, on relève les valeurs correspondantes des enthalpies libres standard $\Delta_r G^0$ relatives aux réactions (1) et (2) :

$$\begin{array}{l} 4 \ Cu_{(s)} \ + \ O_{2(g)} \ = \ 2 \ Cu_2 O_{(s)} \\ 2 \ Cu_{(s)} \ + \ O_{2(g)} \ = \ 2 \ Cu O_{(s)} \\ \end{array} \ \ \begin{array}{l} (1) \\ (2) \end{array}$$

Données:

T(K)	300	800
$\Delta_r G_1^0 \ (kJ.mol^{-1})$	-300	-230
$\Delta_r G_2^0 \ (kJ.mol^{-1})$	-260	-170

On suppose par ailleurs que $\Delta_r H^0$ et que $\Delta_r S^0$ sont indépendantes de T pour les deux réactions.

1) Déterminer $\Delta_r H_k^0$ et $\Delta_r S_k^0$ (k = 1, 2) pour les deux réactions.

L'enthalpie et l'entropie standard de la réaction étant indépendantes de la température, l'enthalpie libre standard $\Delta_r G^0(T)$ de la réaction est une fonction affine de T. Nous avons donc à résoudre un système de deux équations à deux inconnues. En posant $T_a=300~{\rm K}$ et $T_b=800~{\rm K}$, nous obtenons :

$$\left\{ \begin{array}{lcl} \Delta_r G^0(\mathbf{T}_a) & = & \Delta_r H^0 - \mathbf{T}_a \, \Delta_r S^0 \\ \Delta_r G^0(\mathbf{T}_b) & = & \Delta_r H^0 - \mathbf{T}_b \, \Delta_r S^0 \end{array} \right.$$

d'où:

$$\Delta_r S^0 = \frac{\Delta_r G^0(\mathbf{T}_a) - \Delta_r G^0(\mathbf{T}_b)}{\mathbf{T}_b - \mathbf{T}_a}$$

et

$$\Delta_r H^0 = \Delta_r G^0(T_a) + T_a \Delta_r S^0 = \frac{T_b \Delta_r G^0(T_a) - T_a \Delta_r G^0(T_b)}{T_b - T_a}$$

Application numérique:

	Réaction (1)	Réaction (2)
$\Delta_r H^0 \text{ (en kJ.mol}^{-1}$ -	- 342	- 314
$\Delta_r S^0 \text{ (en J.K}^{-1}.\text{mol}^{-1})$	- 140	- 180

2) Soit $CuO_{(s)} + Cu_{(s)} = Cu_2O_{(s)}$. Déterminer $\Delta_r G_3^0(T)$ pour cette réaction.

 $\text{CuO}_{(s)}+\text{Cu}_{(s)}=\text{Cu}_2\text{O}_{(s)}$ (3). On constate que : (3) = 1/2 x (1) - 1/2 x (2) et donc :

$$\Delta_r H_3^0 = \frac{\Delta_r H_1^0 - \Delta_r H_2^0}{2} = -14 \text{ kJ.mol}^{-1}$$

et

$$\Delta_r S_3^0 = \frac{\Delta_r S_1^0 - \Delta_r S_2^0}{2} = 20 \text{ J.K}^{-1}.\text{mol}^{-1}$$

d'où:

$$\Delta_r G_3^0(T) = -14 - 20.10^{-3} \text{ T kJ.mol}^{-1}$$

3) Soit 2 $Cu_2O_{(s)}+O_{2(g)}=4$ $CuO_{(s)}.$ Déterminer $\Delta_rG_4^0(T)$ pour cette réaction.

De même : 2 $Cu_2O_{(s)} = O_2(g) = 4 CuO_{(s)}$ (4). On constate que (4) = 2 x (2) - (1) d'où :

$$\Delta_r H_4^0 = 2 \Delta_r H_2^0 - \Delta_r H_1^0 = -286 \text{ kJ.mol}^{-1}$$

et

$$\Delta_r S_4^0 = 2 \Delta_r S_2^0 - \Delta_r S_1^0 = -220 \text{ J.K}^{-1}.\text{mol}^{-1}$$

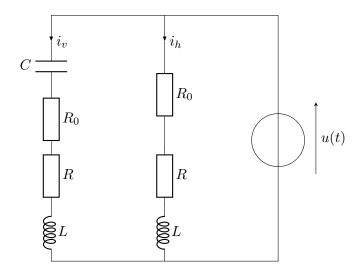
et finalement:

$$\Delta_r G_4^0(\mathrm{T}) = -286 + 0.220 \mathrm{T kJ.mol}^{-1}$$

2 Principe du moteur asynchrone

I. Génération d'un champ magnétique tournant

1. Dessiner le schéma électrocinétique correspondant à ce circuit en y faisant figurer L et R.



2. Déterminer :

a) La valeur de R_0 pour que le courant $i_h(t)$ soit en retard de $\pi/4$ sur la tension u(t).

On doit donc avoir $\varphi_h - \varphi_u = -\pi/4$. On utilise la représentation complexe pour résoudre cette question :

$$\underline{i}_h(t) = \frac{\underline{u}(t)}{R + R_0 + iL\omega_0}$$
 d'où $\varphi_h - \varphi_u = -\arctan\left(\frac{L\omega_0}{R + R_0}\right) = -\pi/4$

donc:

$$L\omega_0 = R + R_0 \iff R_0 = L\omega_0 - R$$

b) La valeur de C pour que le courant $i_v(t)$ soit en avance de $\pi/4$ sur la tension u(t).

On a maintenant $\varphi_v - \varphi_u = +\pi/4$. En notation complexe on obtient :

$$\underline{i}_v(t) = \frac{\underline{u}(t)}{R + R_0 + jL\omega_0 + \frac{1}{jC\omega_0}} \quad \text{d'où} \quad \varphi_v - \varphi_u = -\arctan\left(\frac{L\omega_0 - 1/C\omega_0}{R + R_0}\right) = \pi/4$$

ce qui donne:

$$\frac{1}{C\omega_0} - L\omega_0 = R + R_0 \quad \text{d'où} \quad \boxed{C = \frac{1}{(L\omega_0 + R + R_0)\omega_0} = \frac{1}{2L\omega_0^2}}$$

c) Application numérique : L=200 mH, $R=0.5~\Omega$ et $f_0=\omega_0/2\pi=100$ Hz. Calculer R_0 et C.

$$R_0 = 125 \ \Omega \ \mathrm{et} \ C = 6.3 \, \mu \mathrm{F}$$

Ce sont des valeurs tout à fait courantes en TP.

d) Montrer que les amplitudes I_h et I_v sont identiques lorsque les conditions précédentes sont remplies.

On a:

$$I_h = |\underline{i}_h(t)| = \frac{U}{\sqrt{(R+R_0)^2 + (L\omega_0)^2}} = \frac{U}{\sqrt{2(R+R_0)^2}}$$

et

$$I_v = |\underline{i}_v(t)| = \frac{U}{\sqrt{(R+R_0)^2 + \left(L\omega_0 - \frac{1}{C\omega_0}\right)^2}} = \frac{U}{\sqrt{2(R+R_0)^2}}$$

Les amplitudes des deux courants sont bien identiques.

3. Montrer que le champ magnétique total $\overrightarrow{B}(A,t)$ créé au point A par l'ensemble des deux bobines est un champ tournant dont on précisera le sens de rotation.

Les phases des deux courants électriques sont respectivement $\varphi_h = \varphi_u - \pi/4 = -\pi/2$ et $\varphi_v = \varphi_u + \pi/4 = 0$ puisque $\varphi_u = -\pi/4$. En notant $I_0 = I_h = I_v$ la valeur commune de l'amplitude des courants, on a donc :

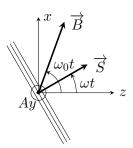
$$i_h(t) = I_0 \cos(\omega_0 t - \pi/2) = I_0 \sin(\omega_0 t)$$
 et $i_v(t) = I_0 \cos(\omega_0 t)$

ce qui produit, par le théorème de superposition, un champ magnétique :

$$\overrightarrow{B}(A,t) = \alpha \frac{\mu_0 N I_0}{\ell_b} \cos(\omega_0 t) \overrightarrow{e_z} + \alpha \frac{\mu_0 N I_0}{\ell_b} \sin(\omega_0 t) \overrightarrow{e_x}$$
$$= B_0 \left[\cos(\omega_0 t) \overrightarrow{e_z} + \sin(\omega_0 t) \overrightarrow{e_x} \right]$$

Il s'agit d'un champ magnétique tournant dans le sens trigonométrique.

II. Principe du moteur asynchrone



4. Déterminer la force électromotrice induite dans (E) par le champ magnétique tournant. En déduire que (E) est parcouru par un courant induit i(t) vérifiant l'équation différentielle :

$$L_s \frac{\mathrm{d}i}{\mathrm{d}t} + R_s i = \Phi_0 \Omega \sin(\Omega t)$$

où $\Omega = \omega_0 - \omega$. On donnera l'expression de la constante Φ_0 en fonction de N, S et B_0 .

Comme \overrightarrow{B} est uniforme à l'échelle de la surface des spires, son flux à travers S est (tenir compte des N spires) :

$$\Phi(\overrightarrow{B}/S) = N \overrightarrow{B}.\overrightarrow{S} = NB_0 S \cos[(\omega_0 - \omega)t]$$

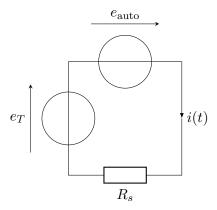
D'après la loi de Faraday, la fém induite par ce champ magnétique tournant est :

$$e_T = -\frac{\mathrm{d}\Phi(\overrightarrow{B}/S)}{\mathrm{d}t} = NB_0S(\omega_0 - \omega)\sin[(\omega_0 - \omega)t]$$

De plus, comme on tient compte de l'inductance L_s de l'enroulement, il y a une **fém** autoinduite qui s'écrit :

$$e_{\rm auto} = -L_s \frac{\mathrm{d}i}{\mathrm{d}t}$$

Ainsi, le schéma électrocinétique équivalent à l'enroulement est :



d'où:

$$e_T + e_{\text{auto}} = R_s i$$
 c'est à dire $L_s \frac{\mathrm{d}i}{\mathrm{d}t} + R_s i = \Phi_0 \Omega \sin(\Omega t)$ avec $\Phi_0 = N B_0 S$

5. On se place en régime sinusoïdal forcé. L'intensité du courant dans (E) est alors sinusoïdale de pulsation Ω et de la forme :

$$i(t) = \lambda \cos(\Omega t) + \mu \sin(\Omega t)$$

 $où \lambda \ et \ \mu \ sont \ deux \ constantes.$

Déterminer les expressions de λ et μ en fonction de Φ_0 , Ω , L_s et R_s .

On substitue l'expression de i(t) dans l'équation différentielle de la question précédente et on regroupe les termes en $\cos(\Omega t)$ et $\sin(\Omega t)$. On obtient :

$$(L_s\Omega \mu + R_s\lambda)\cos(\Omega t) + (R_s\mu - L_s\Omega \lambda)\sin(\Omega t) = \Phi_0\Omega \sin(\Omega t)$$

Cette équation devant être valable pour tout t, on peut particulariser en prenant $\Omega t = 0$ et $\Omega t = \pi/2$. On obtient alors le système de deux équations :

$$\begin{cases} L_s\Omega \,\mu + R_s\lambda &= 0 \\ R_s\mu - L_s\Omega \,\lambda &= \Phi_0\Omega \end{cases} \iff \begin{cases} \lambda &= -\Phi_0\Omega \,\frac{L_s\Omega}{R_s^2 + (L_s\Omega)^2} \\ \mu &= \Phi_0\Omega \,\frac{R_s}{R_s^2 + (L_s\Omega)^2} \end{cases}$$

6. Donner l'expression du moment magnétique \overrightarrow{m} de l'enroulement (E). En déduire le moment des forces de Laplace $\overrightarrow{\Gamma}(t)$ exercé par le champ magnétique tournant.

On sait que : $\overrightarrow{m} = N i(t) \overrightarrow{S}$ et donc, puisque \overrightarrow{B} est uniforme :

$$\overrightarrow{\Gamma}(t) = \overrightarrow{m} \wedge \overrightarrow{B} = NB_0S i(t) \begin{bmatrix} \sin(\omega t) \\ 0 \\ \cos(\omega t) \end{bmatrix} \wedge \begin{bmatrix} \sin(\omega_0 t) \\ 0 \\ \cos(\omega_0 t) \end{bmatrix}$$
$$= \Phi_0 i(t) \left[\sin(\omega_0 t) \cos(\omega t) - \cos(\omega_0 t) \sin(\omega t) \right] \overrightarrow{e_y}$$

d'où:

$$\overrightarrow{\Gamma}(t) = \Phi_0 i(t) \sin[(\omega_0 - \omega)t] \overrightarrow{e_y} = \Phi_0 i(t) \sin(\Omega t) \overrightarrow{e_y}$$

7. En réalité le dispositif possède une grande inertie mécanique et la grandeur significative à considérer est la valeur moyenne $\langle \overrightarrow{\Gamma} \rangle$ de $\overrightarrow{\Gamma}(t)$. Montrer que :

$$<\overrightarrow{\Gamma}>=\Gamma\overrightarrow{e_y} \quad avec \quad \Gamma=rac{\Omega\,R_s\Phi_0^2}{2\,(R_s^2+L_s^2\Omega^2)}$$

En remplaçant l'intensité i(t) par son expression obtenue à la question 11., il vient :

$$\overrightarrow{\Gamma}(t) = \Phi_0 \lambda \cos(\Omega t) \sin(\Omega t) \overrightarrow{e_y} + \Phi_0 \mu \sin^2(\Omega t) \overrightarrow{e_y}$$

En passant à la valeur moyenne, sachant que $\langle \cos(\Omega t) \sin(\Omega t) \rangle = 0$ et $\langle \sin^2(\Omega t) \rangle = 1/2$, on obtient :

$$| < \overrightarrow{\Gamma} > = \frac{\Phi_0 \,\mu}{2} \,\overrightarrow{e_y} = \frac{\Omega \, R_s \Phi_0^2}{2 \left(R_s^2 + L_s^2 \Omega^2 \right)} \,\overrightarrow{e_y} |$$

8. On donne ci-dessous l'allure du moment moyen Γ en fonction de la vitesse angulaire ω de (E).

Quelle est la plage de pulsations ω pour lesquelles ce moment est effectivement moteur?

Le couple est moteur lorsque $\Gamma > 0$, c'est à dire si $0 < \omega < \omega_0$. Le champ magnétique tournant doit donc tourner plus vite que l'enroulement.

9. Le mécanisme pivot n'est pas parfait et il exerce un moment mécanique résistant constant $\overrightarrow{\Gamma_r} = -\Gamma_r \overrightarrow{e_y}$ ($\Gamma_r > 0$) en raison de frottements. On suppose que :

$$\Gamma(0) < \Gamma_r < \Gamma_{\rm max}$$

À l'aide du théorème du moment cinétique et en ne considérant que le moment moyen pour les forces de Laplace, établir l'équation qui découle de la constance de ω . Utiliser le graphe précédent pour montrer qu'il n'y a alors que deux valeurs possibles ω_1 et ω_2 de la vitesse angulaire de rotation.

En régime permanent, ω est constante et on a :

$$J\,\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Gamma - \Gamma_r = 0 \quad \text{d'où} \quad \boxed{\Gamma = \Gamma_r}$$

On trace donc la droite horizontale d'équation $y = \Gamma_r$. Elle vient couper la courbe $\Gamma = f(\omega)$ pour deux pulsations ω_1 et $\omega_2 > \omega_1$

10. Étudier la stabilité de chacun de ces deux régimes de fonctionnement.

La rotation à ω_2 est stable et celle à ω_1 est instable. Montrons-le pour ω_2 .

- Si à partir d'une vitesse de rotation ω_2 , la vitesse angulaire ω augmente légèrement pour une raison ou une autre, alors le couple moteur Γ diminue, donc $\Gamma - \Gamma_r$ devient négatif, ce qui fait diminuer ω d'après le TMC. La rotation est donc ramenée à son point d'équilibre ω_2
- Inversement, si à partir de ω_2 la vitesse angulaire ω diminue légèrement pour une raison ou une autre, alors le couple moteur Γ augmente, donc $\Gamma \Gamma_r$ devient positif, ce qui fait alors augmenter ω . La rotation est donc à nouveau ramenée à son point d'équilibre ω_2