I. Chimie

On considère l'équilibre suivant : $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$.

- 1. Indiquer l'influence : a) d'une élévation de température ; b) d'une augmentation isobare de pression ; c) d'une introduction isotherme et isobare de : α) $\text{Cl}_{2(g)}$ β) $\text{PCl}_{5(g)}$ γ) d'un gaz inactif.
- 2. Sous une pression constante P=3,0 bar et à 500 K, on introduit 1,0 mol de PCl_5 . Déterminer la composition du système à l'équilibre.

Données à 298 K

Constituant	$\text{Cl}_{2(g)}$	$PCl_{3(g)}$	$PCl_{5(g)}$
$\Delta_f \mathrm{H}^0 \; (\mathrm{kJ.mol}^{-1})$	0	- 287,0	- 374,9
$S_m^0 (J.K^{-1}.mol^{-1})$	223,0	311,7	364,5

On suppose que $\Delta_r H^0$ et $\Delta_r S^0$ ne dépendent pas de la température (approximation d'Ellingham).

II. Diffusion d'une onde électromagnétique par un atome

La puissance rayonnée par un dipôle électrique $\overrightarrow{p}(t)$ placé en O, à travers une sphère de centre O et de rayon r, dans la zone de rayonnement :

 $P_{\text{ray}} = \frac{\mu_0}{6\pi c} \| \overrightarrow{p}(t - r/c) \|^2$

Un atome d'hydrogène H est placé à l'origine O des coordonnées d'un repère d'espace (Oxyz) liée à un référentiel galiléen. On suppose que le proton est immobile en O. L'électron, de charge -e et de masse

m est repéré par son vecteur position \overrightarrow{OM} de coordonnées (x,y,z). On notera \vec{v} son vecteur vitesse. On suppose que :

- L'électron est lié au proton par une force de rappel élastique $\vec{F_r} = -k \overrightarrow{OM}$ (cette force résulte d'un développement limité de la force électrique exercée par le proton, autour de la position d'équilibre de l'électron).
- On tient compte de la perte d'énergie de l'électron par rayonnement en introduisant une force de frottement de type fluide : $\vec{F} = -\frac{m}{\tau}\,\vec{v}$
- L'atome est placé dans une OPPH EM de pulsation ω , rectilignement polarisée selon \vec{e}_z et se propageant dans la direction $+\vec{e}_x$. Le champ électrique de l'onde s'écrit en notation complexe :

$$\overrightarrow{\underline{E}} = E_0 \exp[i(kx - \omega t)] \overrightarrow{e_z}$$

avec $E_0 > 0$ constante réelle.

- 1) a) Le milieu de propagation étant le vide, quelle est l'expression du champ magnétique associé \overrightarrow{B} .
 - b) On suppose que l'électron n'est pas relativiste : $\|\vec{v}\| \ll c$. Montrer que la force magnétique exercée par l'onde sur l'électron est négligeable devant la force électrique.
 - c) Soit a la taille caractéristique de l'atome. On suppose que la longueur d'onde λ de l'onde électromagnétique vérifie : $\lambda \gg a$. En déduire que la force exercée par l'onde sur l'électron peut s'écrire sous la forme approchée :

$$\overrightarrow{F}_{\text{onde}} = -eE_0\cos(\omega t)\,\overrightarrow{e}_z$$

Sachant que a est de l'ordre du nanomètre, dans quel(s) domaine(s) des ondes électromagnétiques doit être située λ pour que cette approximation soit vérifiée?

- 2) a) Déterminer les trois équations différentielles vérifiées par ses coordonnées cartésiennes x, y et z. On posera $\omega_0 = \sqrt{k/m}$.
 - b) Montrer qu'au delà du régime transitoire, caractérisé par une constante de temps τ dont on donnera l'expression, le mouvement forcé de l'électron se fait uniquement suivant $\overrightarrow{e_z}$, c'est à dire que $x(t) \approx 0$ et $y(t) \approx 0$ et déterminer l'expression de z(t).

L'atome H se comporte comme un dipôle électrique de moment : $\vec{p}(t) = -e \overrightarrow{OM}$.

3) a) Calculer la puissance électromagnétique rayonnée $P_{\text{ray}}(r,t)$ à la distance $r\gg a$ de l'atome et à l'instant t et montrer que sa valeur moyenne $< P_{\text{ray}}>$ se met sous la forme :

$$< P_{\text{ray}} > = P_0 \frac{\omega^4}{\left(\omega^2 - \omega_0^2\right)^2 + \left(\frac{\omega}{\tau}\right)^2}$$

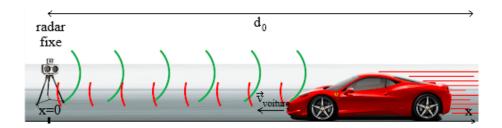
en explicitant l'expression de la constante P_0 en fonction de E_0 , e, m, c et ε_0 .

- b) Les deux paramètres ω_0 et $1/\tau$ étant du même ordre de grandeur, montrer que lorsque $\omega \gg \omega_0$: $\langle P_{\text{ray}} \rangle = P_0 \left(\frac{\omega}{\omega_0}\right)^4$, (diffusion de Rayleigh).
- c) Dans le domaine des fréquences optiques c'est l'équation du
 b) qui est pertinente pour décrire la puissance rayonnée.
 Expliquer pourquoi le ciel est bleu.

III. Radar automobile : effet Doppler

Un radar routier situé en x=0 émet une onde électromagnétique de fréquence $f_0=1$ GHz de la forme : $s_e(x=0,t)=A_m\cos(\omega_0 t)$

On négligera tout phénomène d'atténuation de l'onde lors de la propagation et lors de sa réflexion. La célérité de l'onde électromagnétique est c.



- 1. On s'intéresse tout d'abord à l'onde $s_e(x,t)$ émise par le radar et reçue par la voiture.
 - a) Déterminer l'expression de $s_e(x,t)$ pour x>0.
 - b) Sachant que l'onde est reçue par une voiture initialement à une distance d_0 du radar et se rapprochant de celui-ci à la vitesse constante $\overrightarrow{v} = -v \overrightarrow{e_x}$, calculer la position $x_v(t)$ de la voiture au cours du temps et en déduire l'expression de l'onde reçue au niveau de la voiture.
 - c) Quelle est finalement la fréquence f_r du signal reçu par la voiture?
- 2. On suppose que la voiture réémet instantanément l'onde qu'elle reçoit sous forme d'onde réfléchie : $s_r(x_v(t), t) = s_e(x_v(t), t)$.
 - a) Déterminer l'expression de l'onde $s_r(0,t)$ reçue par le radar.
 - b) Quelle est alors la fréquence $f_{\text{écho}}$ de l'onde reçue par le radar en fonction de f_0 , v et c? En déduire la vitesse v de la voiture en fonction de f_0 , $f_{\text{écho}}$ et c.