$\operatorname{DS-6bis}$ (Centrale-Mines) - Barème

	7	4	44
Connaissance du cours			
Quantité de questions traitées			
Détail/Rigueur de la rédaction			
Utilisation appropriée de schémas			
Soin de la rédaction			
Commentaires pertinents			

	CHIMIE - Problème 1 : Production du dihydrogène	élève	prof	max
Q.1	• déf avec formation d'une mole à partir de corps simples dans leur ESR			1
Q.1	• $\Delta_f H^0(\mathcal{H}_{2(g)}) = 0$ car $H_2(g)$ corps simple dans son ESR à 298K			
	• $\Delta_r H^0 = 205.7 \ kJ.mol^{-1}$ • BONUS si endothermique			2(+0.5)
$\mathbf{Q.2}$	• $\Delta_r G^0(298K) = 141.7 \ kJ.mol^{-1} $ • $\Delta_r S^0 = 214.8 \ J.K^{-1}.mol^{-1}$			
	• $\Delta_r S^0 > 0$ en lien avec le désordre qui augmente avec la quantité de gaz			
Q.3	• d'après Le Châtelier • $P \nearrow \Rightarrow \stackrel{2}{\leftarrow}$			2
Q. 0	• d'après Vant'Hoff • $T \nearrow \Rightarrow \stackrel{1}{\longrightarrow}$			
Q.4	$\bullet \ \Delta_r G^0(1223K) = -57 \ kJ.mol^{-1}$			1(+0.5)
Q.4	• $K^0 = 2,73.10^2$ • BONUS si réaction avancée mais pas totale			
	• tableau d'avancement • BONUS si colonne total gaz • $\xi = \alpha n_0$			$3_{(+1)}$
Q.5	• $x(CH_4) = \frac{1-\alpha}{2(1+\alpha)}, x(H_2) = \frac{3\alpha}{2(1+\alpha)}$ et $x(CO) = \frac{\alpha}{2(1+\alpha)}$			
Q. 0	• $K^0 = \frac{x(\text{CO}) x^3(\text{H}_2)}{x(\text{CH}_4) x(\text{H}_2\text{O})} \left(\frac{P}{P^0}\right)^2 $ • $\Rightarrow \frac{\alpha^2}{1-\alpha^2} = \sqrt{\frac{4K^0}{2700}} = 0,636$			
	• résolution à la calculatrice $\alpha \simeq 0.62$ • BONUS si cohérent avec valeur de K^0			
Q.6	• $P(CH_4) = P(H_2O) = 1.17 \text{ bar}, P(CO) = 1.91 \text{ bar et } P(H_2) = 5.74 \text{ bar}$			0.5
Q.7	• $Q_2 = \frac{n(\text{CO}) n(\text{H}_2)^3}{n(\text{CH}_4) [n(\text{H}_2\text{O}) + \text{d}n] [n_g + \text{d}n]^2} \left(\frac{P}{P^0}\right)^2 < Q_1 = K^0(T)$			1(+0.5)
·	• $\Delta_r G_2 = RT \ln \left(\frac{Q_2}{K^0(T)} \right) < 0 \Rightarrow \stackrel{1}{\longrightarrow} \bullet \text{ BONUS si conforme avec modération}$			
Q.8	• $\Delta_r G_3 = \Delta_r G_3^0(1223K) + RT \ln \left(\frac{P(\text{CO}_2)P^0}{P(\text{CO})^2} \right) \bullet \Delta_r G_3 = -2,15 \text{ kJ.mol}^{-1}$			1.5
4. 0	• $\Delta_r G_4 = \Delta_r G_4^0(T) + RT \ln \left(\frac{P(\dot{H}_2)^2}{P(CH_4)P^0} \right) = 9,26 \text{ kJ.mol}^{-1}$			
Q.9	• $\Delta_r G_3 < 0 \Rightarrow \stackrel{1}{\longrightarrow}$ et le graphite va se déposer			1
~	• $\Delta_r G_4 > 0 \Rightarrow \stackrel{2}{\longleftarrow}$ et le graphite va disparaître			
	Total			13

	PHYSIQUE - Problème 2 : Ondes de Schumann	élève	prof	max
I.B.1)	$\bullet R_T \gg h$ donc localement plan			0.5
,	$ullet$ Propagation simultanée de $ec{E}$ et $ec{B}$			2
ID a)	• Surfaces où onde prend même valeur = plans			
I.B.2)	• Onde avec direction et sens de propagation			
	• monochromatique : 1 seule fréquence			
	• Les 4 équations de Maxwell			1.5
I.B.3)	• Établissement de l'équation de d'Alembert			
	• Obtention de $k_n = \omega_n/c$			
	• $B_n(x + 2\pi R_T, t) = B_n(x, t) \text{ donc } 2\pi R_T = n\lambda$			$1.5_{(+0.5)}$
I.B.4)	• $f_1 = 7.46 \text{ Hz}$; $f_2 = 14.9 \text{ Hz}$; $f_3 = 22.4 \text{ Hz}$			
	• Valeurs proches de celles mesurées			
	• BONUS si très basses fréquences / ondes EM usuelles		Γ	
I.B.5)	• $\overrightarrow{\cot} \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ donne $\vec{k} \wedge \vec{B} = -\frac{\omega}{c^2} \vec{E}$ (ou calcul direct)			1
	$\bullet \overrightarrow{E_n^+} = -cB_{0n}\cos(\omega t - k_n x)\overrightarrow{e_z}$		ı	T
I.B.6)a)	$\bullet \overrightarrow{B_n}(x,t) = B_{0n}\cos(\omega t + k_n x) \overrightarrow{e_y}$			0.5
	$\bullet B_n'(x,t) = B_n^+(x,t) + B_n^-(x,t) = 2B_{0n}\cos(\omega_n t)\cos(k_n x) \overrightarrow{e_y}$			2.5
I.B.6)b)	$ \bullet \overrightarrow{E_n}(x,t) = cB_{0n}\cos(\omega t + k_n x) \overrightarrow{e_z} \bullet \overrightarrow{E_n}(x,t) = \overrightarrow{E_n}(x,t) + \overrightarrow{E_n}(x,t) = 2cB_{0n}\sin(\omega_n t)\sin(k_n x) \overrightarrow{e_y} $			
- / - /	$\bullet \overrightarrow{E_n}(x,t) = \overrightarrow{E_n}(x,t) + \overrightarrow{E_n}(x,t) = 2cB_{0n}\sin(\omega_n t)\sin(k_n x)\overrightarrow{e_n}$			
	• Onde stationnaire • Polarisée rectilignement			
	$\bullet \overrightarrow{E_2} - \overrightarrow{E_1} = \frac{\sigma}{\epsilon_0} \overrightarrow{n_{12}} \text{ et } \overrightarrow{B_2} - \overrightarrow{B_1} = \mu_0 \overrightarrow{j_s} \wedge \overrightarrow{n_{12}}$			3
	$ullet$ Ionosphère et Terre conducteurs parfaits : $\vec{E} = \vec{0}$ et $\vec{B} = \vec{0}$			
I.B.7)	• En $z=0$: $\overrightarrow{E_n}(z=0) = \frac{\sigma_n(z=0)}{\epsilon_0} \overrightarrow{e_z}$ et $\overrightarrow{B_n}(z=0) = \mu_0 \overrightarrow{j_{sn}}(z=0) \wedge \overrightarrow{e_z}$			
,	• En $z = 0$ $\overrightarrow{j_{sn}}(x,t) = -\frac{2B_{0n}}{\mu_0} \cos(\omega_n t) \cos(k_n x) \overrightarrow{e_x}$			
	• En $z = h : \overrightarrow{B_n}(z = h) = -\frac{\sigma_n(z = h)}{\epsilon_0} \overrightarrow{e_z}$ et $\overrightarrow{B_n} = -\mu_0 \overrightarrow{j_{sn}}(z = h) \land \overrightarrow{e_z}$			
	• En $z = h : \overrightarrow{j_{sn}}(x, z = h, t) = \frac{2B_{0n}}{\mu_0} \cos(\omega_n t) \cos(k_n x) \overrightarrow{e_x}$			
	$\bullet \ u_{em} = \frac{\varepsilon_0 \vec{E} ^2}{2} + \frac{ \vec{B} ^2}{2u_0}$			2
I.C.1)	$\bullet u_{em} = \frac{4B_{0n}^2 \cos^2(\omega_n t) \cos^2(k_n x)}{\mu_0} \bullet \langle u_{em} \rangle = \frac{2B_{0n}^2 \cos^2(k_n x)}{\mu_0}$ $\bullet \langle \mathcal{E}_n \rangle = \iiint_{\text{tranche}} \langle u_{em} \rangle dx dy dz \implies \langle \mathcal{E}_n \rangle = \frac{B_{0n}^2 b h \lambda_n}{\mu_0}$			
	$\mu_0 \qquad \mu_0 $			
	, ~			
I.C.2)a)	• $[J_n] = A.m^{-2}$ et $[j_{sn}] = A.m^{-1}$ donc δ_{tn} homogène à une longueur			0.5
I.C.2)b)	$\bullet \ p_J = \frac{\ \vec{J}\ ^2}{\gamma}$			0.5
	$\bullet P_{Jtn} = \iiint \frac{4B_{0n}^2}{\mu_n^2 \delta_{x-\gamma}^2} \cos^2(\omega_n t) \cos^2(k_n x) d\tau$			2.5
I.C.2)c)	$\bullet P_{jtn} = \frac{4B_{0n}^{2}}{\mu_0^2 \delta_{tn}^2 \gamma} \cos^2(\omega_n t) \delta_{tn} b \int_0^{\lambda_n} \cos^2(k_n x) \mathrm{d}x$			
1.0.2)6)	$\bullet P_{jtn} = \frac{\frac{2B_{0n}^2}{2B_{0n}^2}}{\mu_0^2 \delta_{tn} \gamma} \cos^2(\omega_n t) \lambda_n b$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\bullet W_{jtn} = \frac{{}^{2}B_{0n}^{2}}{\mu_{0}^{2}\delta_{tn}\gamma}\lambda_{n}b \int_{0}^{T}\cos^{2}(\omega_{n}t) dt = \frac{B_{0n}^{2}}{\mu_{0}^{2}\delta_{tn}\gamma}\lambda_{n}b T = \frac{B_{0n}^{2}}{\mu_{0}^{2}\delta_{tn}\gamma}\frac{\lambda_{n} 2\pi b}{\omega_{n}}$			
	$\bullet \ W_{jtn} = \frac{B_{0n}^2 \delta_{tn} b \pi \lambda_n}{\mu_0}$			
I.C.2)d)	$\bullet W_{Jin} = \frac{B_{0n}^2 \delta_{in} b \pi \lambda_n}{\mu_0}$			0.5
I.C.2)e)	$\bullet \ W_{Jn} = W_{Jn} + W_{Jin}$			0.5
I (C 9)	$\bullet Q_n = \frac{2h}{\delta_{in} + \delta_{tn}} \bullet Q_1 = 10^3 \bullet Q_2 = 1,5.10^3$			2
I.C.3)	• Q_1 et Q_2 élevés donc $W_{jn} \ll \langle \mathcal{E}_n \rangle$: méthode perturbative adaptée.			
	-41 or 42 derived dollo ii $jn \sim (en)$. Incomode periodicine adaptee.			

Total		22

	PHYSIQUE - Problème 3 : Excitation d'ondes de surface	élève	prof	max
1)	• Les 4 équations de Maxwell			0.5
2)	• PFD appliqué à un $e^-: m \frac{d\vec{v}}{dt} = -e\vec{E} - \frac{m}{\tau}\vec{v}$			0.5
3)	$ullet \vec{j} = -en\vec{v} \cdot m \frac{\partial \vec{j}}{\partial t} + \frac{m}{\tau} \vec{j} = ne^2 \vec{E}$			1
,	• Prendre divergence équation précédente			3
4)	• $\operatorname{div} \vec{E} = \rho/\varepsilon_0$ • $\operatorname{div} \vec{j} + \partial \rho/\partial t = 0$			'
4)	$\bullet \frac{\partial^2 \rho}{\partial t^2} + \frac{1}{\tau} \frac{\partial \rho}{\partial t} + \omega_n^2 \rho = 0 \bullet \omega_n^2 = \frac{ne^2}{m\epsilon_0}$			
	• Si $\tau \to +\infty$ $\frac{\partial^2 \rho}{\partial \omega^2} + \omega_n^2 \rho = 0$ OH pulsation propre ω_n			
	• Si $\tau \to +\infty$ $\frac{\partial^2 \rho}{\partial t^2} + \omega_p^2 \rho = 0$ OH pulsation propre ω_p Pour Na • $\omega_p = 9.18 \times 10^{15} \text{ rad.s}^{-1} \bullet \hbar \omega_p = 9.68 \times 10^{-19} \text{ J} = 6.05 \text{ eV}$			4
5)	• $\lambda_p = \frac{2\pi c}{\omega_p} = 205 \text{ nm}$ • Rayonnement ultraviolet			
3)	Pour Al • $\omega_p = 2.40 \times 10^{16} \text{ rad.s}^{-1} \bullet \hbar \omega_p = 2.53 \times 10^{-18} \text{ J} = 15.8 \text{ eV}$			
	• $\lambda_p = 78.5 \text{ nm}$ • Rayonnement ultraviolet			
6)	$\bullet \left(m\left(-i\omega\right) + \frac{m}{\tau}\right) \ \underline{\vec{j}} = ne^2 \ \underline{\vec{E}}$			1
0)	$\bullet \ \gamma(\omega) = \frac{\varepsilon_0 \omega_p^2}{-i\omega + 1/\tau}$			
	• Maxwell-Ampère et Faraday donnent			2
7)	$ullet$ $\Delta \vec{B} - \mu_0 \gamma \frac{\partial \vec{B}}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = \vec{0}$			
()	$\bullet \ \Delta \vec{B} = -k^2 \vec{B} \ \text{et} \ \frac{\partial \vec{B}}{\partial t} = -i\omega \vec{B}$			
	$\bullet \ \underline{k}^2 = \frac{\omega}{c^2} + \mu_0 \gamma i\omega$			
	• $\Delta \vec{E} - \mu_0 \varepsilon_0 \underline{\varepsilon}_r(\omega) \frac{\partial^2 \vec{E}}{\partial t^2} = \vec{0} \iff \left(-\underline{k}^2 + \underline{\varepsilon}_r(\omega) \frac{\omega^2}{c^2} \right) \vec{E} = \vec{0}$			1 5
8)				1.5
0)	$ullet \underline{\varepsilon}_r(\omega) = 1 - \frac{\gamma}{\varepsilon_0 i \frac{\omega}{\omega}}$			
	$\bullet \ \underline{\varepsilon}_r(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\frac{\omega}{\tau}}$			
	$ullet$ $\Delta \overrightarrow{E_1} - rac{1}{c^2} rac{\partial^2 \overrightarrow{E_1}}{\partial t^2} = \vec{0}$			1.5
9)	$\bullet \ \Delta \overrightarrow{\underline{E_1}} = \frac{\overset{c^2}{\text{d}^2} \underbrace{\overset{ct^2}{\cancel{E_1}(z)}}}{\overset{c^2}{\text{d}z^2}} \exp[i(kx - \omega t)] - k^2 \overrightarrow{\underline{E_1}}(z) \exp[i(kx - \omega t)]$			
,				
	$\bullet \frac{\mathrm{d}^2 \underline{\mathscr{E}}_{\underline{1}}(z)}{\mathrm{d}z^2} + \left(\frac{\omega^2}{c^2} - k^2\right) \underline{\mathscr{E}}_{\underline{1}}(z) = \vec{0}$			
10)	• Solution exponentielle impose $\omega^2 - c^2 k^2 < 0$			0.5
11)	• Solution générale $\underline{\underline{\mathscr{E}}}_1(z) = \underline{\underline{\mathscr{E}}}_{m1+} \exp(\alpha_1 z) + \underline{\underline{\mathscr{E}}}_{m1-} \exp(-\alpha_1 z)$			1.5
11)	• $\alpha_1 = \sqrt{k^2 - \frac{\omega^2}{c^2}}$ • Pas de divergence $\vec{E}_{m1+} = \vec{0}$			
10)	$\bullet \operatorname{div} \overrightarrow{E_1} = 0 \bullet ik \mathcal{E}_{1x}(z) + \frac{\mathrm{d}\mathcal{E}_{1z}(z)}{\mathrm{d}z} = 0$			1.5
12)	$\bullet \ \forall z > 0, \ ik \mathscr{E}_{1x}(z) = \alpha_1 \mathscr{E}_{1z}(z)$			
	• Espace $z < 0$, $\Delta \vec{\underline{E}} - \mu_0 \varepsilon_0 \underline{\varepsilon}_r(\omega) \frac{\partial^2 \vec{\underline{E}}}{\partial t^2} = \vec{0}$			1.5(+0.5)
10\	$\bullet \frac{\mathrm{d}^2 \underline{\mathscr{E}_2}(z)}{\mathrm{d}z^2} + \left(\frac{\omega^2 - \omega_p^2}{c^2} - k^2\right) \underline{\mathscr{E}_2}(z) = \vec{0}$, ,
13)				
	• Solution exponentielle ssi $\omega^2 - \omega_p^2 - c^2 k^2 < 0$			
	BONUS Condition question 10 vérifiée ⇒ condition précédente réalisée			
14)	• Solution non divergente $\underline{\cancel{\mathcal{E}}}_2(z) = \underline{\cancel{\mathcal{E}}}_{m2} \exp{(\alpha_2 z)}$			1
, 	$ullet$ $lpha_2=\sqrt{k^2-rac{\omega^2-\omega_p^2}{c^2}}$			
15)	• divergence nulle $\vec{E} \Rightarrow \forall z < 0$, $ik \underline{\mathscr{E}_{2x}}(z) = -\alpha_2 \underline{\mathscr{E}_{2z}}(z)$			0.5
16)	• Composante tangentielle \underline{E}_{x} est continue			1
10)	• Toutes les composantes de \vec{B} sont continues			

	PHYSIQUE - Problème 3 : Excitation d'ondes de surface	élève	prof	max
	$\bullet \frac{\partial \overrightarrow{B}}{\partial t} = -\overrightarrow{\nabla} \wedge \overrightarrow{\underline{E}} = \left(ik \underbrace{\mathscr{E}_z(z) - \frac{\mathrm{d}\mathscr{E}_x}{\mathrm{d}z}(z)}\right) \exp[i(kx - \omega t)] \overrightarrow{e_y}$			4
	$ullet \overrightarrow{\underline{B}} = -\left(rac{k}{\omega}\underline{\mathscr{E}}_{z}(z) + rac{i}{\omega}rac{\mathrm{d}\mathscr{E}_{x}}{\mathrm{d}\overline{z}}(z) ight)\exp[i(kx-\omega t)]\overline{e_{y}}$			
17)	• Expressions de $\overrightarrow{\underline{B}_1}$ et $\overrightarrow{\underline{B}_2}$			
	• Continuité de \vec{B} et $\underline{\mathscr{E}_{1x}}(0^+) = \underline{\mathscr{E}_{2x}}(0^-)$			
	• Obtention de $k^2 = \alpha_1 \alpha_2$ • Obtention de $k^2 = \frac{\omega^2}{c^2} \frac{\omega^2 - \omega_p^2}{2\omega^2 - \omega_p^2}$			
	• Nécessité $k^2 > 0$ et $\omega^2 - c^2 k^2 < 0$ • $\omega < \omega_p / \sqrt{2}$			
	• Tracé courbe • Nom des axes • Asymptote verticale en $\omega = \omega_p/\sqrt{2}$			2(+1.5)
18)	• BONUS si tracé $k = \omega/c$ • $k > \omega/c \Rightarrow v_{\varphi} > c$			
	\bullet BONUS si v_{φ} pas de sens physique \bullet BONUS Seule v_g possède sens physique			
10)	• $\lambda_0 = \frac{2\pi c}{\omega}$ et $\lambda_s = \frac{2\pi}{k}$ • $\frac{\lambda_s}{\lambda_0} = \frac{\omega}{ck} = \sqrt{\frac{2\omega^2 - \omega_p^2}{\omega^2 - \omega_p^2}}$			2.5
19)	• $\exp(-\alpha_1 d_1) = 1/10$ et $\exp(-\alpha_2 d_2) = 1/10$			
	$\bullet \ d_1 = \frac{\ln 10}{\alpha_1} = \frac{\ln 10}{2\pi\sqrt{\frac{1}{\lambda_s^2} - \frac{1}{\lambda_0^2}}} \bullet \ d_2 = \frac{\ln 10}{\alpha_2} = \frac{\ln 10}{2\pi\sqrt{\frac{1}{\lambda_s^2} - \frac{1}{\lambda_0^2} + \frac{1}{\lambda_p^2}}} \text{ avec } \lambda_p = \frac{2\pi c}{\omega_p}$			
	\bullet Pour Al $\lambda_0=785,4$ nm \bullet $\lambda_s=781,4$ nm et $\lambda_p=78,5$ nm			2(+0.5)
20)	• $d_1 = 2.84 \mu\text{m}$ • $d_2 = 29 \text{nm}$			
	• BONUS Ondes sont très localisées au voisinage de la surface			

Total		33