DS-7bis (Mines-Centrale) - Barème

	9	4	44
Connaissance du cours			
Quantité de questions traitées			
Détail/Rigueur de la rédaction			
Utilisation appropriée de schémas			
Soin de la rédaction			
Commentaires pertinents			

	Problème 1 : L'atmosphère de Mars et son échappement (d'après CCS-PC-2022)	élève	prof	max
Q.1	• $\vec{P} = \vec{F}_{\text{gravit}} + \vec{F}_{\text{ie}}$ • \vec{F}_{ie} négligeable pour Mars			1
Q.2	$\bullet \ \vec{F} = \frac{q_1 q_2}{4\pi \varepsilon_0 d^2} \overrightarrow{u_{12}} \bullet Schéma$			1
Q.3	• $q \leftrightarrow m, 1/4\pi\varepsilon_0 \leftrightarrow -G, \vec{E} \leftrightarrow \vec{g} \bullet \phi(\vec{g}/S_F) = -4\pi G M_{\rm int}$			1
Q.4	• Étude symétries et invariances : $\vec{g} = g(r) \overrightarrow{e_r}$			1(+0.5)
	• Thm Gauss: $g(r) = -G\frac{m_n}{r^2}$ • BONUS si schéma			
$\mathbf{Q.5}$	$\bullet \ \vec{g}(M) = \left(\frac{R_m^2}{r^2}\right) \ \vec{g_0} \bullet g_0 = 3.73 \text{ m.s}^{-2}$			1
Q.6	• $\overrightarrow{\operatorname{grad}} P = \mu \overrightarrow{g} = \mu(r) g_0 \overrightarrow{u_r} \bullet \frac{\partial P}{\partial r} = -\mu(r) g_0 \bullet \text{ BONUS si } P \text{ et } \mu \text{ indépts de } \theta$			1(+0.5)
	et φ .			
	• GP isotherme : $\mu(r) = \frac{MaP(r)}{RT_0}$			1.5
Q.7	$\bullet \frac{\partial P}{\partial r} = -\frac{M_a g_0}{RT_0} P(r) \Rightarrow P(r) = C_0 \exp(-\frac{M_a g_0 r}{RT_0})$			
	• $H = \frac{RT_0}{M_a g_0}$ et $C_0 = P_0 \exp(\frac{R_m}{H})$ • $P(r) = P_0 \exp(-\frac{r - R_m}{H})$			
Q.8	• $M_a = 0.96M(CO_2) + 0.02M(Ar) + 0.02M(N_2) = 44 \text{ g.mol}^{-1} • H = 10.7 \text{ km}$			1
$\mathbf{Q.9}$	• $\mu(r) = \frac{M_a g_0}{RT_0} P_0 \exp(-\frac{r - R_m}{H})$ et $\mu_0 = \frac{M_a g_0}{RT_0}$			0.5
	• $m_{\text{atm}} = \iiint \mu(r) r^2 dr \sin \theta d\theta d\varphi$ • $m_{\text{atm}} = 4\pi \mu_0 \int_{R_m}^{+\infty} r^2 \exp(-\frac{r - R_m}{H}) dr$			3
Q.10	• Chgt var. $u = \frac{r - R_m}{H}$: $m_{atm} = 4\pi \mu_0 H \int_0^{+\infty} (Hu + R_m)^2 \exp(-u) du$			
·	• $m_{\text{atm}} = 4\pi\mu_0 H \left(2H^2 + 2HR_m + R_m^2\right)$ • $m_{\text{atm}} = \frac{4\pi P_0}{g_0} \left(2H^2 + 2HR_m + R_m^2\right)$			
0.11	$\bullet m_{\text{atm}} = 2.34 \times 10^{16} \text{ kg}$			
Q.11	• On prend $a = 10^{-10} \text{m}$ • $\ell_0 = \frac{RT_0}{a^2 \mathcal{N}_a P_0} = 0.5 \text{ mm} = 500 \ \mu\text{m}$			1.5
	• Petit à l'échelle macroscopique mais ≫ taille molécule			
Q.12	• En $r_m + e : \ell = H$ et $\ell = \frac{Ma}{a^2 \mathcal{N}_a \mu_0 \exp(-e/H)} = \ell_0 \exp(e/H)$ • $e = H \ln\left(\frac{H}{\ell_0}\right)$			2
.	\bullet $e = 1.8 \times 10^2$ km \bullet Résultat cohérent avec énoncé			_
	• Vitesse de libération d'une particule de masse m située en $r = R_m + e$:			3
	$E_m = \frac{1}{2} m v_\ell^2 - G \frac{m m_n}{R_m + e} = 0$			
Q.13	• $v_{\ell} = \sqrt{\frac{2Gm_m}{R_m + e}}$ avec $Gm_m = R_m^2 g_0 \bullet v_{\ell} \approx \sqrt{2R_m g_0}$ car $e \ll R_m$			
	• $v_{\ell} \approx 5.0 \times 10^3 \text{ m.s}^{-1}$ • Molécules de H ₂ possèdent très majoritairement une			
	vitesse supérieure à v_ℓ : absence dans atmosphère martienne • Par contre,			
	éléments les plus lourds seront conservés par l'atmosphère, c'est le cas ici du			
	CO_2 et en moindre quantité Ar et N_2 .			

Total		18.5

	Problème 2 : Autour d'une centrale nucléaire (d'après CCS-PSI-2024)	élève	prof	max
Q.1	$\bullet \ S_{tot} = NH\pi d \bullet S_{tot} = 4.53 \times 10^3 \ m^2$			1
	• BONUS si schéma avec sens des échanges thermiques			5(+0.5)
	ullet Bilan d'énergie interne (ou premier principe) à la tranche de hauteur H entre			
$\mathbf{Q.2}$	r et $r + dr$ et t et $t + dt \bullet d(\delta U) = \delta^2 Q + \delta^2 W \bullet \delta^2 W = 0$ car $V = cste$			
Q.2	• $d(\delta U) = 0$ en régime stat. • $\delta^2 Q = [\phi(r) - \phi(r + dr) + N\mathcal{P}_V 2\pi r H dr] dt$			
	$\bullet - \frac{d\phi}{dr} + N\mathcal{P}_V 2\pi H r = 0 \bullet \phi = \iint \overrightarrow{j}_{th} \cdot \overrightarrow{dS} \bullet \text{Loi de Fourier} : \overrightarrow{j}_{th} = -\lambda_2 \frac{dT}{dr} \overrightarrow{u}_r$			
	• $\phi(r) = -2\pi r N H \lambda_2 \frac{dT}{dr}$ • $\frac{d}{dr} \left(r \frac{dT}{dr}\right) + Ar = 0$ avec $A = \frac{\mathcal{P}_V}{\lambda_2}$			
0.2	• Intégration $\Rightarrow \frac{dT}{dr} = -\frac{Ar}{2} + \frac{B}{r} \bullet B = 0$ pour éviter divergence de ϕ en $r = 0$			1.5
Q.3	$ullet T(r) = T_2 + rac{\mathcal{P}_V}{4\lambda_2} (R_3^2 - \bar{r^2})$			
0.4	• Continuité du flux en $r = R_3$ • Newton : $P_1 = \phi_{cc}(R_3) = 2\pi R_3 N H h_2(T_2 - T_3)$			2
Q.4	$\bullet R_3 = \frac{d}{2} - e \bullet T_3 = T_2 - \frac{P_1}{\pi(d-2e)NHh_2}$			
	• Pas de source dans la gaine \Rightarrow idem $Q.2$ avec $\mathcal{P}_V = 0$			2
0.5	$\bullet \ \forall \ r \in [R_3; R_4] \ \phi(r) = cste = P_1$ en régime stationnaire sans source ni puits			•
Q.5	$\bullet \phi (R_3 < r < R_4) = -\lambda_3 \frac{dT}{dr} 2\pi r N H = P_1$			
	• $T(R_3 < r < R_4) = T_4 + \frac{P_1 d}{2\lambda_3 S_{\text{tot}}} \ln\left(\frac{R_4}{r}\right)$			
	• Par continuité du flux en $r=R_4: P_1=\phi_{cc}(R_4)$ • $P_1=S_{tot}h_4(T_4-T_5)$			5(+0.5)
	$\bullet T_4 = T_5 + \frac{P_1}{S_{tot}h_4} \bullet T_4 = 328 {}^{\circ}C$			
$\mathbf{Q.6}$	• $T_3 = T_4 + \frac{P_1 d}{2\lambda_3 S_{\text{tot}}} \ln\left(\frac{d}{d-2e}\right)$ • $T_4 = 352 {}^{\circ}C$			
Q. .0	$ullet T_2 = T_3 + rac{2N_3 O_{\rm tot}}{\pi (d-2e)NHh_2} = 422 {}^{\circ}C$			
	$\bullet P_1 = P_V \pi R_3^2 N H \bullet T_1 = T_2 + \frac{P_V R_3^2}{4\lambda_2} = T_2 + \frac{P_1}{4\pi\lambda_2 N H} \bullet T_1 = 838 ^{\circ}C$			
	• BONUS si cohérent car température de plus en plus élevée au centre			
	• Courbe $T(r)$ avec axes • Allure parabolique entre $r=0$ et $r=R_3$			2.5
Q.7	• Allure globalement décroissante • Présence de discont. en $r=R_3$ et $r=R_4$			
	• Température constante entre $r = R_4$ et $r = R_5$			
	\bullet Panne de pompe \Rightarrow risque de vaporisation			$1.5_{(+0.5)}$
Q.8	$ullet$ Moins bon coefficient d'échange si vapeur \Rightarrow risque d'emballement			
Q.o	• BONUS si mention Three Mile Island ou Fukushima			
	Augmentation évacuation puissance en augmentant débit fluide caloporteur			T
	• Premier principe industriel à la tranche d'épaisseur dz • BONUS si schéma			5(+0.5)
	• Régime stationnaire • $\Delta \left[h + \frac{c^2}{2} + gz \right] = q + w_u$			
0.0	• Variation d'énergie mécanique négligée • Pas de pièce mobile $\Rightarrow w_u = 0$			
$\mathbf{Q.9}$	• $D_m(h(z+dz)-h(z))=\delta Q$ • 2^{nde} loi de Joule $h=c_5T$ (phase condensée)			
	• Pas de transfert thermique sur la partie externe en $r=R_5$			
	• Transfert thermique en $r = R_4$ venant du combustible $\Rightarrow \delta Q = P_V(z)\pi R_4^2$ dz			
	$\bullet D_m c_5 \frac{\mathrm{d}T}{\mathrm{d}z} = P_V(z) \pi R_4^2$			

	$\bullet \frac{dT}{dz} = \frac{\pi R_4^2 P_0}{D_m c_5} \sin\left(\frac{\pi z}{H}\right) \bullet T_s - T_e = \frac{2R_4^2 H P_0}{D_m c_5} \bullet T(z) = T_e + \frac{T_s - T_e}{2} \left(1 - \cos\left(\frac{\pi z}{H}\right)\right)$	$1.5_{(+1)}$
Q.10	• BONUS si cohérence de l'allure de $P(z)$ avec maximum au milieu du crayon	
	$ullet$ BONUS si $T_s > T_e$ cohérent car chaleur récupérée par le fluide	
	• Continuité du flux en $r = R_4$ entre z et $z + dz$ en régime stationnaire	2.5
Q.11	• $P_V(z)\pi R_4^2 dz = h_{cc} (T_p(z) - T(z)) 2\pi R_4 dz$ • $T_p(z) = T(z) + \frac{P_0 R_4}{2h_{cc}} \sin(\frac{\pi z}{H})$	
·	$\bullet T_p(z) = T_e + \frac{T_s - T_e}{2} \left(1 - \cos\left(\frac{\pi z}{H}\right) \right) + \frac{D_m c_5 (T_s - T_e)}{4h_{cc} R_4 H} \sin\left(\frac{\pi z}{H}\right)$	
	$\bullet \frac{T_p(z) - T_e}{T_s - T_e} = \frac{1}{2} \left[1 + B \cos\left(\frac{\pi z}{H}\right) + C \sin\left(\frac{\pi z}{H}\right) \right] \text{ avec } B = -1 \text{ et } C = \frac{D_m c_5}{2h_{cc} R_A H}$	
	• Idem Q.3 à adapter avec dépendance en z	3.5
O 10	• $T(r,z) - T_p(z) = \frac{P_V(z)}{4\lambda_2} (R_4^2 - r^2)$ • Utilisation de Q.10 et Q.11	 '
Q.12	$\bullet \frac{T(r,z)-T_e}{T_s-T_e} = \frac{1}{2} \left[1 + D\cos\left(\frac{\pi z}{H}\right) \right] + \left[E + F\left(1 - \frac{r^2}{R^2}\right) \right] \sin\left(\frac{\pi z}{H}\right)$	
	$\bullet D = -1 \bullet E = \frac{C}{2} = \frac{D_m c_5}{4h_{cc} R_4 H} \bullet F = \frac{D_m c_5}{8\lambda_2 H}$	
Q.13	• $T_c(z) = T(0, z) = T_e + \frac{T_s - T_e}{2} \left[1 + D\cos\left(\frac{\pi z}{H}\right) + 2(E + F)\sin\left(\frac{\pi z}{H}\right) \right]$	1
•	$\bullet T_c(z) = T_e + \frac{T_s - T_e}{2} \left[1 - \cos\left(\frac{\pi z}{H}\right) + \frac{D_m c_5}{2H} \left(\frac{1}{h_{cc} R_4} + \frac{1}{2\lambda_2}\right) \sin\left(\frac{\pi z}{H}\right) \right]$	
	• Dérivation de $T_c(z)$ et recherche de z_{max} tel que $\frac{dT_c}{dz}(z_{max}) = 0$	$4_{(+0.5)}$
	$\bullet \frac{dT}{dz} = \frac{T_s - T_e}{2} \frac{H}{\pi} \left[\sin\left(\frac{\pi z}{H}\right) + \frac{D_m c_5}{2H} \left(\frac{1}{h_{cc} R_A} + \frac{1}{2\lambda_2}\right) \cos\left(\frac{\pi z}{H}\right) \right]$	1
Q.14	$\bullet \frac{dT_c}{dz}(z_{max}) = 0 \Rightarrow \tan\left(\frac{\pi z}{H}\right) = -\frac{D_m c_5}{2H} \left(\frac{1}{h_{cc}R_4} + \frac{1}{2\lambda_2}\right)$	
	$\bullet \ 0 < z < H \Rightarrow \frac{\pi z_{max}}{H} = \pi - \arctan\left(\frac{D_m c_5}{2H} \left(\frac{1}{h_{cc} R_4} + \frac{1}{2\lambda_2}\right)\right)$	
	$\bullet z_{max} = H - \frac{H}{\pi} \arctan\left(\frac{D_m c_5}{2H} \left(\frac{1}{h_{cc} R_4} + \frac{1}{2\lambda_2}\right)\right)$	
	• $z_{max} = 1.86 \ m$ • BONUS si cohérent car $T_{c,max} \simeq H/2$ (milieu du crayon)	
	• $T_{c,max} = 971 ^{\circ}C \bullet T_{c,max} < T_{fus,combustible} = 2800 ^{\circ}C \Rightarrow \text{suret\'e OK}$	
	• Puissance à évacuer nulle en $z=0$ et $H\Rightarrow T_p(0)=284^{\circ}\mathrm{C}, T_p(H)=322^{\circ}\mathrm{C}$	2
	• Puissance maximale à évacuer au centre du crayon donc $T_{p,max}$ en $z \simeq H/2$	
Q.15	• Le fluide se réchauffe en montant et permet moins bien d'évacuer la chaleur	
	produite pour z grand $\Rightarrow T_{p,max}$ en $z > H/2$	
	• $T_{p,max} \simeq 337 ^{\circ}C < 345 ^{\circ}C = T_{vap,eau}(P=155 bar) \Rightarrow \text{suret\'e OK}$	
	\bullet Définition d'un système fermé Σ^* à t et $t+dt$ à partir du système ouvert Σ	8.5
	• Pas de variation d'énergie mécanique macro $\Rightarrow dU_{\Sigma^*} = \delta W + \delta Q \ (1^{er} \text{ ppe})$	
	• Schéma • $U_{\Sigma^*}(t) = U_{\Sigma}(t) + \delta m_{\text{entrant}} u_e = U_{\Sigma}(t) + D_m u_e dt$	
	• $U_{\Sigma^*}(t+dt) = U_{\Sigma}(t) + \delta m_{\text{sortant}} u_s = U_{\Sigma}(t+dt) + D_m u_s dt$	
Q.16	• Régime stationnaire $\Rightarrow U_{\Sigma}(t+dt) = U_{\Sigma}(t)$ et débit D_m constant	
Q.10	$\bullet dU_{\Sigma^*} = U_{\Sigma^*}(t + dt) - U_{\Sigma^*}(t) = D_m (u_s - u_e) dt$	
	• $\delta W_{pression} = (p_e S_e v_e - p_s S_s v_s) dt$ • $\delta W_{pression} = \left(\frac{p_e}{\mu_e} - \frac{p_s}{\mu_s}\right) D_m dt$	
	$\bullet \delta W_u = \mathcal{P}_u dt \bullet \delta W = \delta W_{pression} + \delta W_u \bullet \delta Q = \mathcal{P}_{th} dt$	
	$\bullet D_m \left(u_s + \frac{P_s}{\mu_s} - u_e - \frac{P_e}{\mu_e} \right) = D_m \left(h_s - h_e \right) = \mathcal{P}_{\mathrm{u}} + \mathcal{P}_{\mathrm{th}}$	
	• $w_u = \mathcal{P}_{\mathbf{u}}/D_m$ et $q = \mathcal{P}_{\text{th}}/D_m$ • $h_s - h_e = w_u + q$ • 1^{er} ppe industriel	
	• Formulaire $\Rightarrow \Delta S = C \ln \left(\frac{T_{\text{sortie}}}{T_{\text{entrée}}} \right)$ • BONUS si démo avec 2^{nde} id. thermo.	2(+0.5)
Q.17	• Isentropique $\Delta S = 0$ donc $T_0 = T_1$ • 2^{nde} loi de Joule : $\Delta T = 0 \Rightarrow \Delta h = 0$	Z(+0.5)
Ø.11	• Isentropique $\Delta S = 0$ donc $I_0 = I_1 \bullet 2^{mn}$ for de Joule : $\Delta I = 0 \Rightarrow \Delta h = 0$ • Isentropique verticale dans le diagramme	
	1 1	1.5
O 18	• Dénominations sur le diagramme : courbes d'ébullition et de rosée, isentro-	1.5
Q.18	piques, isenthalpes, isobares et isothermes • Allure globale du gyale • Placement gerragt des points 0, 1, 1, 2, 2, et 3	
	• Allure globale du cycle • Placement correct des points 0, 1, 1' 2, 2' et 3	 2 =
	• Sortie de la turbine — point 3 (mélange diphasé) • mesleulé avec es = mes (0,04bar) + (1, m)es (0,04bar) (ou the des moments)	$2.5_{(+0.5)}$
Q.19	• x calculé avec $s_3 = xs_V(0,04\text{bar}) + (1-x)s_L(0,04\text{bar})$ (ou th. des moments) • $x = 0.78$ • BONUS si cohérent car point 3 plus près de la phase vapeur	
	• h_3 calculé avec $h_3 = xh_V(0,04\text{bar}) + (1-x)h_L(0,04\text{bar})$ (ou lecture directe) • $h_3 = 2.01 \times 10^3 \text{ kJ} \cdot \text{kg}^{-1}$	
	■ 113 — 2.01 × 10 KJ· Kg	

	• $\eta = \frac{w_u}{q}$ • BONUS si énergie des pompes négligées		$4.5_{(+1)}$
	• 1^{er} ppe à $2' \longrightarrow 3$ adiabatique dans la turbine		
	$\bullet -w_u = h_3 - h_{2'} \bullet w_{requ par le fluide} = -w_u$		
Q.20	• 1^{er} ppe à $1 \longrightarrow 2'$ sans pièce mobile dans le générateur de vapeur		
	$\bullet \ q = h_{2'} - h_1 \bullet \eta = \frac{h_{2'} - h_3}{h_{2'} - h_1}$		
	• Enthalpies massiques calculées ou lues sur le diagramme • $\eta=0.42$		
	• BONUS si rendement classique pour une centrale		
	• 1^{er} et 2^{nd} ppes industriels sur un cycle, appliqué au fluide		4
	• $\Delta H_{\text{cycle}} = 0 = Q_C + Q_F + W \text{ et } \Delta S = 0 = \frac{Q_C}{T_C} + \frac{Q_F}{T_F}$		
Q.21	ullet H et S fonctions d'états et fonctionnement supposé réversible		
	• $\eta_C = \frac{-W}{Q_C}$ • $\eta_C = 1 - \frac{T_F}{T_C}$ • $T_C = T_{2'} = 773 \text{ K et } T_F = T_0 = 302 \text{ K}$		
	• $\eta_C = 0.61$ • $\eta < \eta_C$ car cycle réel irréversible		
Q.22	• Attention : question mal posée! • 0.5 par bonne idée		?
Q.23	• 0.5 par bonne idée		?

TOTAL		81.5