ENTHALPIE LIBRE ET POTENTIEL CHIMIQUE

On va introduire dans ce chapitre une nouvelle fonction d'état thermodynamique, l'enthalpie libre G. On va voir qu'elle joue un rôle analogue à celui d'une énergie potentielle en mécanique. C'est pour cela qu'on l'appelle potentiel thermodynamique. D'autre part, l'introduction de G permet d'étudier le potentiel chimique qu'on avait déjà introduit avec les identités thermodynamiques mais dont on avait différé l'étude.

Table des matières

I.	Une	${f nouvelle}$ fonction d'état : l'enthalpie libre G	1
	1)	Le contexte (hypothèses de travail)	1
	2)	Enthalpie libre	2
TT	Entl	halpie libre d'un système monophasé homogène en	
11.		dibre thermodynamique	4
	1)	G est une fonction d'état	4
	2)	Identité thermodynamique	5
	3)	Relation de Gibbs-Helmoltz	5
	4)	Propriété d'homogénéité des grandeurs extensives	5
	5)	Cas particulier d'un corps pur monophasé	8
	·		_
Ш	l. Etu	ide du potentiel chimique. Activité chimique.	9
	1)	Étude du cas particulier du corps pur monophasé	9
		a) Cas particulier d'un corps pur gazeux	9
		b) Cas particulier d'un corps pur en phase condensée	9
	2)	Expression générale du potentiel chimique	10
	3)	Grandeurs molaires standard	10

I. Une nouvelle fonction d'état : l'enthalpie libre G

1) Le contexte (hypothèses de travail)

La très grande majorité des systèmes en réaction chimique évoluent en contact avec l'atmosphère. Dans une première approche, on peut considérer que l'atmosphère :

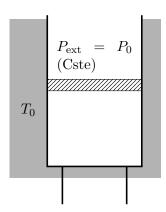
- maintient une pression extérieur $P_{\rm ext}$ constante. Il joue donc le rôle d'un pressostat.
- maintient une température extérieure constante. Il joue le rôle d'une source de chaleur (qu'on peut aussi appeler thermostat).

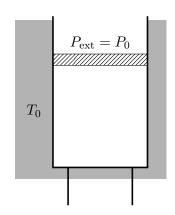
On est donc amené à étudier les propriétés thermodynamiques d'un système siège d'une ou plusieurs réactions chimiques, monophasé ou polyphasé, en évolution sous une pression extérieur $P_{\rm ext}=P_0$ constante et en contact avec une seule source de chaleur de température T_0 (constante par définition d'une source de chaleur).

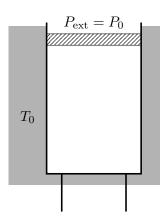
Plus précisément, nous supposerons dans tout le chapitre que :

- Dans l'état initial, on mélange les réactifs. La pression est uniforme dans tout le système et vaut $P_I = P_0$. La température est elle aussi uniforme dans tout le système et vaut $T_I = T_0$.
- Le système est alors le siège de réactions chimiques. Il finit par atteindre un état d'équilbre thermodynamique final Eq_F où sa pression est à nouveau uniforme et vaut P₀. De même la température finale du système est à nouveau égale à T_F = T₀.

On pourra se représenter visuellement le système et son évolution comme sur le schéma page suivante :







Du point de vue des échanges de travail et de chaleur

- Le travail des forces de pression est monobare ($P_{\text{ext}} = \text{Cste}$ et $P_I = P_F = P_{\text{ext}}$)
- En plus du travail des forces de pression, le système peut aussi échanger un autre type de travail W_{autre} avec le milieu extérieur. L'exemple typique est celui d'une cellule électrochimique (ou pile

- électrochimique) parcourue par un courant électrique et qui peut donc échanger du travail électrique avec le milieu extérieur (c'est à dire dans ce cas le circuit électrique situé en dehors du système).
- L'échange de chaleur se fait avec une seule source de chaleur : transformation **monotherme**.

2) Enthalpie libre

Appliquons le premier et le second principe au système contenu dans le récipent entre l'état initial et l'état final.

Définition:

À tout système thermodynamique monophasé ou polyphasé, de **température et pression uniformes** T et P on associe la grandeur $G \stackrel{\text{déf}}{=} U + PV - TS = H - TS$, homogène à une énergie et appelée enthalpie libre du système.

Propriétés :

• Lorsque le système évolue de façon monobare $(P_I = P_F = P_{\text{ext}})$ et $P_{\text{ext}} = P_0 = \text{Cste}$ et monotherme avec $T_I = T_F = T_0$ (température de la source), on a :

$$G_F - G_I \leqslant W_{\text{autre}}(I \to F)$$

Rappel:

Pour cette transformation, rappelons que la variation d'enthalpie du système vérifie :

$$H_F - H_I = W_{\text{autre}}(I \to F) + Q(I \to F)$$

Deux cas particuliers importants en pratique :

1. $W_{\text{autre}}(I \to F) < 0$

C'est typiquement le cas d'une pile électrochimique qui fournit du travail électrique au milieu extérieur (un circuit électrique). Dans ce cas : $W_{\rm autre}(I \to F) = W_{\rm \acute{e}l}(I \to F) < 0$.

2. $W_{\text{autre}}(I \to F) = 0$

Le **seul** travail échangé est celui des forces de pression.

Dans les deux cas précédents, très courants en pratique, la transformation entraîne une diminution de l'enthalpie libre G du système. On peut montrer et nous l'admettrons que **l'état final est caractérisé par un minimum de** G.

Schéma symbolique:

G ↑ État • Lorsque le système est polyphasé et contient N_{φ} phases, alors si on numérote chaque phase à l'aide d'un entier α , $1 \leq \alpha \leq N_{\varphi}$, l'extensivité de U, V et S implique :

L'enthalpie libre d'un système polyphasé (\mathscr{S}) de pression P et de température T est **la somme** des enthalpies libres des sous-systèmes monophasés qui constituent (\mathscr{S}) :

$$G = \sum_{\alpha=1}^{N_{\varphi}} G_{\alpha}$$

Cette propriété justifie qu'on s'intéresse en priorité à un système monophasé

II. Enthalpie libre d'un système monophasé homogène en équilibre thermodynamique

Dans toute cette partie, on étudie un système (\mathcal{S}) monophasé homogène dans un état d'équilibre thermodynamique.

- (\mathscr{S}) renferme K espèces chimiques B_k , $1 \leq k \leq K$ de quantités de matière n_k ;
- Il est supposé **homogène** : la répartition des différentes espèces chimiques dans le système est uniforme ce qui signifie que les variables intensives de composition commes les concentrations molaires C_k ou la masse volumique ρ y sont uniformes.
- La pression P et la température T sont uniformes et stationnaires.

1) G est une fonction d'état

Rappelons que l'équilibre thermodynamique de ce type de système peut être entièrement caractérisé par les variables d'état indépendantes ¹:

$$T, P, n_1, ..., n_K$$

L'enthalpie H, l'entropie S et le volume V sont alors des fonctions d'état de ces variables :

$$H = H(T, P, n_1, ..., n_K)$$

$$S = S(T, P, n_1, ..., n_K)$$

$$V = V(T, P, n_1, ..., n_K)$$

Il s'ensuit que :

^{1.} Il est beaucoup plus commode de choisir la pression P comme variable d'état et pas le volume V. Ce dernier devient une fonction d'état grâce à l'équation d'état du sysème monophasé (penser à un gaz parfait par exemple)

.

L'enthalpie libre G d'un système monophasé homogène en équilibre thermodynamique est une fonction d'état qui dépend de la température T, de la pression P et des quantités de matières n_k des espèces chimiques présentes dans le système.

2) Identité thermodynamique

3) Relation de Gibbs-Helmoltz

4) Propriété d'homogénéité des grandeurs extensives

L'énergie interne, le volume V et l'entropie S et d'un système monophasé homogène en équilibre thermodynamique sont des grandeurs extensives. On en déduit qu'il en est de même pour l'enthalpie H et l'enthalpie libre G:

Une conséquence de l'extensivité est la suivante :

Homogénéité des grandeurs extensives

Soit X une des quatre grandeurs extensives V, H, S ou G. Si on multiplie les quantités de matière de toutes les espèces chimiques B_k par un même facteur positif λ , T et P étant **fixées**, alors :

$$X(T, P, \lambda n_1, \lambda n_2, ..., \lambda n_K) = \lambda X(T, P, n_1, n_2, ..., n_K)$$

Mathématiquement, on dit que X est une fonction homogène de degré 1 par rapport aux quantités de matière.

On dispose alors du **théorème d'Euler** relatif à ce type de fonction.

Définition (fonction homogène de degré α)

Soient p et q deux entiers naturels strictement positifs, tels que $q \le p$. Une application $f: \mathbb{R}^p \longrightarrow \mathbb{R}$ telle que $(x_1, ..., x_p) \mapsto f(x_1, ..., x_p)$ est dite **homogène de degré** α par rapport aux variables $(x_1, ..., x_q)$, si et seulement si :

$$\forall \lambda \in \mathbb{R}_+, f(\lambda x_1, \lambda x_2, ..., \lambda x_q, x_{q+1}, ..., x_p) = \lambda^{\alpha} f(x_1, x_2, ..., x_q, x_{q+1}, ..., x_p)$$

On a alors le:

Théorème d'Euler

Si une application $f: \mathbb{R}^p \longrightarrow \mathbb{R}$ telle que $(x_1, ..., x_p) \mapsto f(x_1, ..., x_p)$ est homogène de degré α par rapport aux variables $(x_1, ..., x_q)$, alors:

$$\sum_{i=1}^{q} x_i \left(\frac{\partial f}{\partial x_i} \right) = \alpha f$$

Remarque:

La somme ne porte que sur les variables $(x_1, ..., x_q)$ qui sont concernées par la propriété d'homogénéité.

Exemple 1:

Montrer que f(x, y, z) = x + 2y - 3z est homogène de degré 1 par rapport à ses trois variables x, y et z et montrer que le théorème d'Euler est vérifié.

Exemple 2:

Vérifier que $f:(x,y,z) \longmapsto \frac{x^2-y^2}{1+z}$ est homogène de degré 2 par rapport aux variables x et y et que le théorème d'Euler est réalisé.

Le théorème d'Euler s'applique donc aux grandeurs extensives X, ce qui permet d'écrire :

$$X(T, P, n_1, n_2, ..., n_K) = \sum_{k=1}^{K} n_k \left(\frac{\partial X}{\partial n_k}\right)_{T, P, n_\ell \neq n_k}$$

L'égalité précédente justifie la définition qui suit :

Définition (Grandeurs molaires partielles)

La grandeur :

$$\widetilde{X}_k \stackrel{\text{def}}{=} \left(\frac{\partial X}{\partial n_k}\right)_{T,P,n_\ell \neq n_k}$$

est appelée grandeur molaire partielle de X par rapport à l'espèce chimique B_k . C'est une fonction d'état de T, P et des quantités de matière $n_1, ..., n_K$:

$$\widetilde{X}_k = \widetilde{X}_k(T, P, n_1, ..., n_K)$$

On a donc la:

Propriété fondamentale

Pour toute grandeur extensive X:

$$X(T, P, n_1, ..., n_K) = \sum_{k=1}^{K} n_k \widetilde{X}_k(T, P, n_1, ..., n_K)$$

En particulier:

5) Cas particulier d'un corps pur monophasé

Si le système est un corps pur monophasé cela signifie qu'il ne contient qu'une seule espèce chimique B de quantité de matière n. C'est donc un cas particulier avec K=1. Toute grandeur extensive X sera donc une fonction d'état de la forme :

$$X = X(T, P, n)$$

III. Étude du potentiel chimique. Activité chimique.

On considère dans toute cette partie un système (\mathscr{S}) monophasé homogène en équilibre thermodynamique, contenant K espèces chimique B_k , $1 \le k \le K$. Ses variables d'état sont : T, P, $n_1,...,n_k$.

- 1) Étude du cas particulier du corps pur monophasé
- a) Cas particulier d'un corps pur gazeux

En thermochimie on suppose que tous les gaz se comportent comme des gaz parfaits $m\hat{e}me$ si la pression est $\acute{e}lev\acute{e}$ (dans certains exercices, la pression pourra facilement atteindre plusieurs bar : on supposera que l'approximation du gaz parfait est encore valable). Rappelons que cette approximation n'est vraiment pertinente que si P ne dépasse pas 1 ou 2 bar.

b) Cas particulier d'un corps pur en phase condensée

Dans ce cas on supposera toujours que la phase condensée est idéale (PCI) : incompressible et indilatable. Le volume V du corps pur vérifie donc :

$$V = n V_m$$
 avec $V_m = \text{Cste indép. de } T \text{ et } P$

2) Expression générale du potentiel chimique

Les deux exemples précédents donnent une idée de l'expression du potentiel chimique d'une espèce B dans un système monphasé homogène. On admet que la forme générale est donnée par le théorème ci-dessous :

Théorème et définition

Le potentiel chimique μ_k d'une espèce chimique B_k dans un système monophasé homogène en équilibre thermodynamique à la pression P et la température T s'écrit toujours sous la forme :

$$\mu_k = \mu_k^0(T) + RT \ln(a(B_k))$$

où:

- $a(B_k)$ est *l'activité chimique* de B_k dans la phase du système.
- R est la constante des gaz parfaits. $R = 8.31 \text{ J.K}^{-1}.\text{mol}^{-1}$
- $\mu_k^0(T)$ est le **potentiel chimique standard** de B_k à la température T: c'est la valeur particulière de μ_k lorsque $a(B_k) = 1$ et que la température est T; $\mu_k^0(T)$ ne **dépend que de la température**.

Voir tableau récapitulatif, à connaître par cœur.

3) Grandeurs molaires standard

Définition

Soit X une grandeur extensive d'un système monophasé homogène en équilibre thermodynamique et soit \widetilde{X}_k la grandeur molaire partielle associée à l'espèce chimique B_k . On appelle grandeur molaire standard, notée $X_{m,k}^{\rm o}$ la valeur particulière que prend \widetilde{X}_k lorsque $a(B_k)=1$.