DS-2 - Barème

	9	4	44
Connaissance du cours			
Quantité de questions traitées			
Détail/Rigueur de la rédaction			
Utilisation appropriée de schémas			
Soin de la rédaction			
Commentaires pertinents			

	Expédition DEEPSEA Challenger	élève	prof	max
Q 1.	\bullet Condition d'équilibre mécanique du fluide \bullet $\rho \vec{g} =$ terme dû au poids			1.5
	\bullet grad P dû à résultante forces de pression			
Q 2.	• Projection sur $\overrightarrow{e_z}$: $\frac{dP}{dz} = -\rho g$ • Intégration $P(z) = P_0 + \rho_0 gz$			1(+0.5)
Q 2.	• BONUS si liquide incompressible : $\rho = \rho_0 = \text{Cste}$			_
Q 3.	• $V = m/\rho$ • Calcul $\chi_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T$			1
	Notation à l'appréciation du correcteur $\bullet d\rho = \left(\frac{\partial \rho}{\partial P}\right)_T dP = \rho \chi_T dP$			2
Q 4.	• $\frac{\mathrm{d}\rho}{\mathrm{d}z} = \rho \chi_T \frac{\mathrm{d}P}{\mathrm{d}z} = -\rho^2 \chi_T g$ • (Sép. variables) $\frac{d\rho}{\rho^2} = -\chi_T g \mathrm{d}z$			
	• Intégration $-\frac{1}{\rho} + \frac{1}{\rho_0} = -\chi_T gz \Rightarrow \rho = \frac{\rho_0}{1 - \chi_T gz}$ • $\frac{dP}{dz} = -\frac{\rho_0 g}{1 - \rho_0 \chi_T gz} \Rightarrow P(z) = -\frac{1}{\chi_T} \ln(1 - \rho_0 \chi_T gz) + \text{Cste}$			
Q 5.	$\bullet \frac{dP}{dz} = -\frac{\rho_0 g}{1 - \rho_0 \chi_T gz} \Rightarrow P(z) = -\frac{1}{\chi_T} \ln(1 - \rho_0 \chi_T gz) + \text{Cste}$			1
	• Cste = P_0			
	• Modèle χ_T Cste : $P(h) = 1.12 \times 10^8$ Pa • Écart 1% avec réalité			1(+1)
Q 6	\bullet BONUS si amélioration en tenant compte de variation de T			
	• BONUS si amélioration en tenant compte d'évol. de salinité eau			
	Total			7.5

	Propulsion d'un navire (CCINP)	élève	prof	max
	$\bullet H = U + PV = U + nRT \Rightarrow dH = dU + nRdT$			2.5
Q1.a)	• $dH = C_p dT$ et $dU = C_v dT$ • $C_p - C_v = nR$			
	• $C_v = \frac{nR}{\gamma - 1}$ et $C_p = \frac{nR\gamma}{\gamma - 1}$ • $n = \frac{m}{M_a} \Rightarrow c_v = \frac{r}{\gamma - 1}$ et $c_p = \frac{\gamma r}{\gamma - 1}$ • $c_v = 716 \text{ J.K}^{-1}.\text{kg}^{-1}$ • $c_p = 1000 \text{ J.K}^{-1}.\text{kg}^{-1}$			
Q1.b)	• $c_v = 716 \text{ J.K}^{-1}.\text{kg}^{-1}$ • $c_p = 1000 \text{ J.K}^{-1}.\text{kg}^{-1}$			1
·	• Adiabatique, réversible et GP donne Invariant de Laplace			$2.5_{(+0.5)}$
Q2.	\bullet BONUS si démo avec 2 pcpe industriel : $s_2 = s_1$ donne Invariant Laplace			
Q2.	$\bullet T_1^{\gamma} P_1^{1-\gamma} = T_2^{\gamma} P_2^{1-\gamma} \Rightarrow T_2 = T_2 \beta^{\frac{\gamma-1}{\gamma}} \bullet T_4 = T_3 \beta^{\frac{1-\gamma}{\gamma}}$			
	• $T_2 \approx 580 \text{ K} \bullet T_4 \approx 673 \text{ K}$			
Q3.	\bullet Axes P et v \bullet Diagramme schématique mais réaliste			1
	• $w_{u,t} = w_u(\text{Cp}) + w_u(\text{Tu})$ • 1 ^{er} pcpe industriel pour Tu et Cp avec $q = 0$			2.5
$\mathbf{Q4.}$	• $w_{u,t} = c_p (T_2 - T_1 + T_4 - T_3) \bullet w_{u,t} = -350 \text{ kJ.kg}^{-1} < 0$			
	• Ensemble Tu + Cp est un moteur			,
Q5.	$\bullet \mathscr{D}_m = \left \frac{\mathscr{D}_u}{w_{u,t}} \right \bullet \mathscr{D}_m = 0.14 \text{ kg.s}^{-1}$			1
	• 1 ^{er} pcpe industriel à l'échangeur avec $w_u = 0$			1(+0.
Q6.a)	• $q_{23} = c_p(T_3 - T_2) = 720 \text{ kJ.kg}^{-1} > 0$			•
	• BONUS sur chaleur reçue par le gaz			
Q6.b)	$\bullet r = \frac{ w_{u,t} }{q_{23}}$ car moteur $\bullet r \approx 0.50$			1
Q7.	• $2^{\text{ème}}$ identité thermo. $dh = Tds + v dP = v dP$ le long de l'isentropique			1
Q1.	$ullet$ Si h croît alors P croît donc $\ln(P)$ croît			
	• Tracé soigneux sur le diagramme			2.5
$\mathbf{Q8}.$	Lectures à 5 kJ.kg ⁻¹ près • $h_1 \approx 425$ kJ.kg ⁻¹ • $h_2 \approx 715$ kJ.kg ⁻¹			
	$\bullet \ h_3 \approx 1520 \ \text{kJ.kg}^{-1} \bullet h_4 \approx 860 \ \text{kJ.kg}^{-1}$			
Q9.a)	• 1 ^{er} pcpe industriel $w'_{ut} = h_2 - h_1 + h_4 - h_3 = -370 \text{ kJ.kg}^{-1}$			$0.5_{(+0)}$
	• BONUS si écart de 6% (faible mais notable)			1
Q.9b)	$\bullet \mathscr{D}'_m = \left \frac{\mathscr{D}_u}{w'_{u,t}} \right = 0.135 \text{ kg.s}^{-1}$			0.5
010	$\bullet \ r' = \frac{ w'_{u,t} }{q'_{c,2}} = \frac{ w'_{u,t} }{h_3 - h_2} = 0.46$			$0.5_{(+0)}$
Q10.	• BONUS si commentaire : réduction du rendement d'environ 8%			
	Total			17.5

TOTAL		