Donnée : constante des gaz parfaits $R = 8.31 \text{ J.K}^{-1}.\text{mol}^{-1}$

1 Mélange de liquides

Le benzène et le toluène sont deux corps purs liquides parfaitement miscibles. On considère une masse $m_B = 234$ g de benzène $B_{(\ell)}$ pur à la température T et sous la pression P et une masse $m_T = 184$ g de toluène $T_{0(\ell)}$ à la même température T et sous la même pression P.

On mélange ces deux corps et on obtient un mélange liquide parfaitement homogène à la température T et sous la pression P (noter que le benzène et le toluène ne réagissent pas chimiquement l'un sur l'autre).

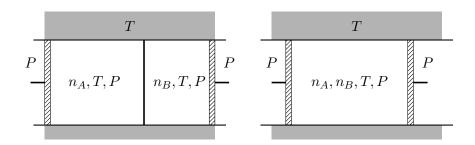
Pour une grandeur extensive X, on pose $\Delta_{\text{mix}}X = X_{\text{après m\'elange}} - X_{\text{avant m\'elange}}$.

Déterminer successivement $\Delta_{\text{mix}}G$, $\Delta_{\text{mix}}S$ et enfin $\Delta_{\text{mix}}H$.

<u>Données</u>: $M(B) = 78 \text{ g.mol}^{-1}$; $M(To) = 92 \text{ g.mol}^{-1}$

2 Mélange de gaz parfaits

On considère deux corps purs en phase gazeuse qu'on notera $A_{(g)}$ et $B_{(g)}$, assimilés à des gaz parfaits et on envisage deux états :



- État 1 : les deux gaz sont séparés dans les deux compartiments d'un cylindre, isolés par une paroi. Le premier contient n_A moles de $A_{(g)}$ pur, à la température T et sous la pression P. Le second contient n_B moles de $B_{(g)}$ pur, à la même température T et sous la même pression P. On note respectivement $H_A^* = n_A H_{mA}(T)$ et $H_B^* = n_B H_{mB}(T)$ les enthalpies des gaz $A_{(g)}$ et $B_{(g)}$ dans cet état.
- État 2 : on retire la paroi et les deux gaz se mélangent sans réagir chimiquement. La température du mélange gazeux (toujours assimilé à un gaz parfait) est encore T et sa pression est P.
- 1) On étudie le système $\{A_{(g)} + B_{(g)}\}$ et on note G son enthalpie libre.
 - a) Calculer la variation $G_2 G_1$ de G entre les états 1 et 2.
 - b) En déduire la variation d'entropie $S_2 S_1$ de ce système entre les états 1 et 2.
- 2) L'enthalpie du mélange gazeux dans l'état 2 est $H_2 = H_{\text{mél}}(T, P, n_A, n_B)$.
 - a) Montrer que:

$$H_{\text{m\'el}}(T, P, n_A, n_B) = H_A^* + H_B^*$$

b) Exprimer la capacité thermique C_P du mélange gazeux dans l'état 2 en fonction de n_A , n_B et des capacités thermiques molaires C_{mPA} et de C_{mPB} de $A_{(q)}$ pur et de $B_{(q)}$ pur.

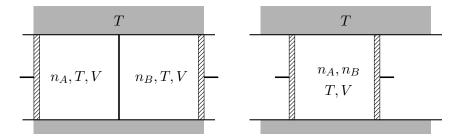
3 Encore un mélange de gaz parfaits

On reprend le dispositif de l'exercice précédent mais on s'arrange pour que :

• Dans l'état 1 (gaz séparés chacun dans son compartiment), les deux gaz aient le même volume V et une température T. On note

 $U_A^*=n_AU_{mA}(T)$ et $U_B^*=n_BU_{mB}(T)$ les énergies internes des deux gaz purs dans cet état.

• Dans l'état 2 (on a retiré la paroi) le mélange de gaz occupe à nouveau le volume V, à la température T.



On étudie à nouveau le système { $A_{(g)} + B_{(g)}$ }

- 1) a) Calculer la variation $G_2 G_1$ entre les états 1 et 2.
 - b) Montrer que $S_2 = S_1$ (ce résultat constitue le théorème de Gibbs)
- 2) L'énergie interne du mélange gazeux dans l'état 2 est $U_2 = U_{\text{m\'el}}(T,V,n_A,n_B).$
 - a) Montrer que :

$$U_{\text{m\'el}}(T, V, n_A, n_B) = U_A^* + U_B^*$$

b) Exprimer la capacité thermique C_V du mélange gazeux dans l'état 2 en fonction de n_A , n_B et des capacités thermiques molaires C_{mVA} et de C_{mVB} de $A_{(q)}$ pur et de $B_{(q)}$ pur.