# Thermodynamique du froid

Le sujet, consacré à l'étude de certaines propriétés physiques à très basse température, comporte deux problèmes totalement indépendants numérotés  $\mathbf{I}$  (étude de transferts thermiques conductifs et convecto-conductifs) et  $\mathbf{II}$  (étude d'un réfrigérateur par détente d'un gaz).

Les vecteurs sont surmontés d'une flèche  $(\vec{w})$ , à l'exception des vecteurs unitaires notés avec un chapeau  $(\hat{u})$ . Les applications numériques seront réalisées avec seulement deux chiffres significatifs. Les données numériques nécessaires et un formulaire, relatif en particulier aux coordonnées sphériques, figurent en fin d'énoncé.

### I Refroidissement des supraconducteurs

Parmi les applications importantes des basses températures, on compte la supraconductivité : certains métaux ou oxydes métalliques acquièrent, en dessous d'une certaine température critique ( $T < T_{\rm sc}$ ) un caractère supraconducteur, le matériau pouvant conduire un courant électrique permanent sans aucune dissipation d'énergie. Cette propriété est par exemple mise à profit pour la production de champs magnétiques intenses.

Dans tout ce qui suit, le matériau supraconducteur est assimilé à un conducteur thermique de conductivité thermique  $\lambda$  de la loi de FOURIER, de masse volumique  $\rho$  et de capacité thermique massique c. On rappelle que, dans ce cas, l'évolution de la température à l'*intérieur* du matériau conducteur est donnée par l'équation de diffusion thermique :

$$\rho c \frac{\partial T}{\partial t} = \lambda \Delta T \qquad \text{où } \Delta \text{ est l'opérateur laplacien}.$$

Les échanges thermiques entre ce matériau et le fluide qui l'entoure seront, dans tous les cas, décrits par la loi de NEWTON : le transfert thermique pariétal (à la surface ou sur les bords) du solide de température T vers le fluide de température  $T_f$ , par unité de temps et par unité d'aire, est  $j_{\text{par}} = k(T - T_f)$  où k est une constante. Les études menées en **I.A** et **I.B** sont totalement indépendantes.

### I.A Refroidissement progressif d'un supraconducteur

Le matériau (supraconducteur) étudié dans cette partie **I.A** à la forme d'une boule de rayon R, de température uniforme T(t). Il est entièrement plongé dans un liquide réfrigérant qui maintient, à grande distance du matériau, la température uniforme et constante  $T_0 < T_{\rm sc}$  (cf. figure 1).

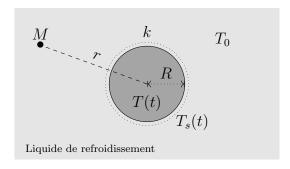


FIGURE 1 – Boule de supraconducteur en cours de refroidissement

 $\Box$  – 1. Donner, en les justifiant, les unités (ou les dimensions) de k et  $\lambda$ . Établir, dans le cas unidimensionnel, l'équation de diffusion thermique rappelée ci-dessus. dans ce cas dans la suite.

- $\Box$  2. Rappeler l'expression de la diffusivité thermique  $D_{\rm th}$  d'un matériau. À quelle condition, portant sur la durée  $\Delta t$  du refroidissement, l'hypothèse consistant à considérer la température du matériau comme *uniforme* est-elle légitime? On se placera
- $\Box$  3. Exprimer en fonction des données la capacité thermique  $C_{\rm th}$  de la boule solide, ainsi que la résistance thermique d'isolement  $R_{\rm th}$  associée aux échanges pariétaux convecto-conductifs à sa surface.

Pour l'étude du refroidissement, il faut aussi tenir compte des transferts thermiques au sein du liquide réfrigérant. On admet que la température  $T_f$  en un point M du liquide supposé immobile ne dépend que de la distance r au centre O de la boule (figure 1). On néglige la capacité thermique massique du liquide réfrigérant; sa conductivité thermique est notée  $\lambda'$ .

- $\Box$  4. Montrer que  $T_f(r,t) = T_0 + [T_s(t) T_0] R/r$
- $\Box$  5. Pourquoi est-il licite de décrire les transferts à travers le fluide en termes de résistance thermique?

Exprimer la résistance thermique  $R'_{\rm th}$  associée au refroidissement conductif, en fonction de  $\lambda'$  et R.

On suppose pour finir que  $\lambda' \gg R k$ .

- $\Box$  6. Déterminer l'équation d'évolution de la température T(t) de la boule solide; on posera  $\tau = \frac{\rho Rc}{3k}$ .
- $\Box$  7. On notera  $T_i = T(t=0)$  la température initiale du matériau. Tracer l'allure de la courbe T(t) et exprimer la durée  $\Delta t$  au bout de laquelle le matériau débute la transition conducteur  $\mapsto$  supraconducteur.

### I.B Refroidissement stationnaire d'un fil supraconducteur

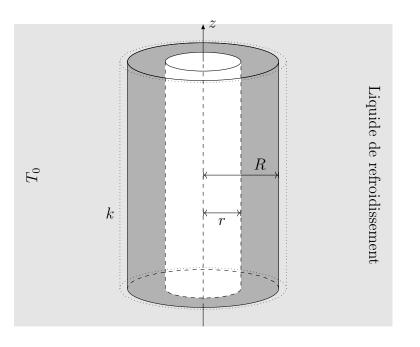
L'absence de résistivité dans les matériaux supraconducteurs n'empêche pas, notamment dans le cadre de régimes transitoires électromagnétiques, l'existence de dissipations de puissance dues au champ électrique induit. Il s'ensuit un chauffage local du matériau supraconducteur. Le passage éventuel de celui-ci au-dessus de la température critique  $T_{\rm sc}$  a alors un effet catastrophique : l'effet Joule apparaît, la température augmente de plus en plus et la surchauffe du bobinage peut détruire celui-ci : c'est le phénomène de quench (voir figure 2).

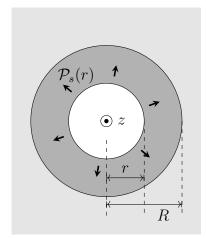


FIGURE 2 – Fuite d'hélium suite à la destruction (quench) d'un aimant supraconducteur utilisé pour la RMN. Département de Chimie de l'université de l'Alberta

On va dans ce qui suit s'intéresser aux conditions de refroidissement propres à éviter le phénomène de quench.

Le matériau supraconducteur étudié a la forme d'un fil cylindrique de rayon R, de très grande longueur (figure 3). Il est entièrement plongé dans un liquide réfrigérant qui maintient une température uniforme  $T_0 < T_{\rm sc}$ , avec lequel les échanges thermiques se font selon la loi de NEWTON. La totalité du fil cylindrique est le siège d'une production de puissance électromagnétique avec la densité volumique supposée uniforme et constante  $p_u$ .





Vue de dessus

FIGURE 3 – Fil supraconducteur en régime stationnaire

- $\Box$  8. Exprimer la puissance totale  $\mathcal{P}_s(r)$  évacuée par une hauteur H de la partie du fil située au plus à la distance r de l'axe avec  $0 \leq r < R$ , cf. figure 3.
- $\Box$  9. En déduire, en régime permanent, l'intensité  $j_{\rm th}(r)$  de la densité volumique de flux thermique conductif dans le fil.
- $\Box$  10. Déterminer l'expression de la température de surface  $T_s$  en fonction de  $T_0$ , k,  $p_u$  et R.
- $\Box$  11. À quel endroit dans le fil la température est-elle maximale? Déterminer l'expression de la valeur  $T_{\max}$  correspondante. Montrer que le phénomène de *quench* ne se produit pas si  $p_u$  est inférieur à une valeur critique  $p_{\max}$  que l'on exprimera.

# II Réfrigérateur à détente de gaz

Les premières études des propriétés des systèmes physiques à très basses températures, et en particulier la découverte de la supraconductivité, ont été faites en utilisant des réfrigérateurs à détente de gaz, à la suite des travaux des néerlandais VAN DER WAALS et KAMERLINGH ONNES. Les parties II.A (étude statistique des gaz parfaits), II.B (modèle énergétique de VAN DER WAALS) et II.C (refroidissement par détente) sont indépendantes.

On n'oubliera pas que le modèle utilisé pour la description thermodynamique des fluides n'est pas le même : modèle des gaz parfaits dans la partie **II.A** et modèle avec interactions entre molécules dans la suite.

### Données numériques

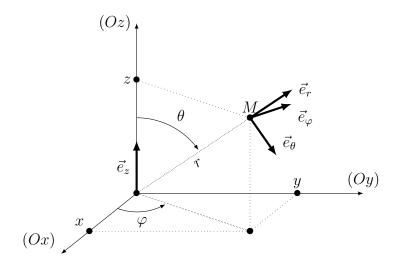
| Grandeur                           | Notation                   | Valeur numérique                                           |
|------------------------------------|----------------------------|------------------------------------------------------------|
| Constante d'Avogadro               | $\mathcal{N}_{\mathrm{A}}$ | $6.0 \cdot 10^{23}  \mathrm{mol^{-1}}$                     |
| Constante de Boltzmann             | $k_{ m B}$                 | $1,4\cdot10^{-23}\mathrm{J}\cdot\mathrm{K}^{-1}$           |
| Constante molaire des gaz parfaits | R                          | $8.3 \mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$ |

# Coefficients de l'équation de van der Waals

| Pour le diazote N <sub>2</sub>                                      | Pour le dihydrogène H <sub>2</sub>                                  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
| $A = 1.4 \cdot 10^{-1} \text{SI}$ $B = 3.9 \cdot 10^{-5} \text{SI}$ | $A = 2.5 \cdot 10^{-2} \text{SI}$ $B = 2.7 \cdot 10^{-5} \text{SI}$ |  |

## Repérage sphérique d'un point M

Le point M de coordonnées cartésiennes (x,y,z) peut aussi être repéré par ses coordonnées sphériques r,  $\theta$  et  $\varphi$  rappelées sur le schéma ci-après :



## Formulaire en coordonnées sphériques

Gradient:

$$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial r} \hat{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{u}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{u}_\varphi$$

Laplacien scalaire:

$$\Delta f = \frac{1}{r^2} \left[ \frac{\partial}{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2} \right]$$