DS n°5 Chimie (Samedi 11 janvier 2025)

1 Étude d'une combustion

On étudie la réaction de combustion :

$$CO_{(g)} + \frac{1}{2} O_{2(g)} = CO_{2(g)}$$
 $\Delta_r H^0 = -283 \text{ kJ.mol}^{-1}$

Données à 25° C : entropies molaires standard

Espèce	$CO_{(g)}$	$CO_{2(g)}$	$O_{2(g)}$
$S_m^0 \text{ (en J.K}^{-1}.\text{mol}^{-1})$	197,3	213,4	205

Hypothèses:

- Nous supposerons dans tout le problème que $\Delta_r H^0$ et $\Delta_r S^0$ ne dépendent pas de la température.
- Tous les gaz sont assimilés à des gaz parfaits. Leurs capacités thermiques molaires à pression constante, supposées indépendantes de la température, sont données ci-dessous en J.K⁻¹.mol⁻¹:

$$C_{Pm}(CO) = 29.1$$
; $C_{Pm}(CO_2) = 37.1$; $C_{Pm}(O_2) = 29.4$ et $C_{Pm}(N_2) = 29.1$

• La constante des gaz parfaits vaut : $R = 8.31 \text{ J.K}^{-1}.\text{mol}^{-1}$.

On étudie la combustion rapide, donc adiabatique, de $n_0 = 1,0$ mol de $CO_{(g)}$ avec $n_1 = 0,5$ mol de dioxygène que l'on introduit en plaçant $CO_{(g)}$ en contact avec la quantité suffisante d'air, dont la composition (en moles) est de 20% de $O_{2(g)}$ et de 80% de $N_{2(g)}$.

Dans un premier temps, la réaction est supposée totale, selon :

$$CO_{(g)} + \frac{1}{2} O_{2(g)} \longrightarrow CO_{2(g)}$$
 (1)

- 1. (a) Quel est le nombre de moles de diazote $N_{2(g)}$ dans le milieu réactionnel?
 - (b) La combustion a lieu à pression constante P=1,0 bar. La température initiale des réactifs est $T_0=298$ K. Déterminer, en la justifiant, l'expression littérale puis la valeur numérique de la température de flamme T_F atteinte par les produits de la combustion.

En réalité, vu la température atteinte, la réaction n'est certainement pas totale. Nous allons donc reprendre le calcul de T_F avec des hypothèses plus réalistes.

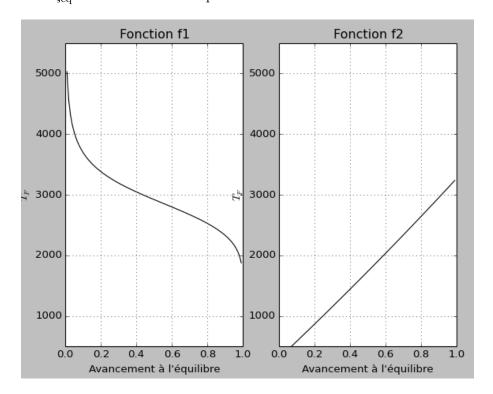
2. (a) En exploitant les données du tableau, déterminer l'expression de l'entropie standard $\Delta_r S^0(T)$ de la réaction (1). On fera l'application numérique correspondante. On déterminera ensuite l'expression de l'enthalpie libre standard $\Delta_r G^0(T)$ de la réaction (1) en fonction de la température T. En déduire que la constante d'équilibre de cette réaction peut se mettre sous la forme :

$$K^0(T) = A \, \exp\left(\frac{B}{T}\right)$$

et donner les valeurs numériques des constantes A et B.

La réaction a toujours lieu sous la pression constante P=1,0 bar, avec les quantités de matière initiales définies au début de l'énoncé. L'avancement à l'équilibre chimique de la réaction (1) sera noté $\xi_{\rm \acute{e}q}$.

- (b) Déterminer la relation entre $K^0(T_F)$ et $\xi_{\acute{e}a}$.
- (c) En déduire l'expression de T_F en fonction de $\xi_{\text{éq}}$, sous la forme : $T_F = f_1(\xi_{\text{éq}})$. Application numérique : calculer T_F dans le cas où $\xi_{\text{éq}} = 0.8$ mol.
- 3. En effectuant un bilan d'enthalpie analogue à celui de la question 1., donner une autre expression de T_F en fonction de $\xi_{\text{éq}}$, sous la forme d'une deuxième fonction : $T_F = f_2(\xi_{\text{éq}})$.
 - Application numérique : calculer T_F dans le cas où $\xi_{\rm \acute{e}q}=0.8$ mol.
- 4. Les graphes des deux fonctions f_1 et f_2 sont donnés ci-dessous. Déterminer la valeur approchée de $\xi_{\text{\'eq}}$ et en déduire la température de flamme réellement atteinte.



2 Équilibre de Deacon

Le chlorure d'hydrogène et le dioxygène donnent lieu à l'équilibre chimique suivant, en phase gazeuse :

$$4 \operatorname{HCl}_{(g)} + O_{2(g)} = 2 \operatorname{H}_2 O_{(g)} + 2 \operatorname{Cl}_{2(g)}$$

Dans tout ce problème, les gaz seront assimilés à des gaz parfaits. La constante des gaz parfaits vaut : $R=8,31~\rm J.K^{-1}.mol^{-1}.$

On rappelle que la pression de référence est : $P^0 = 1$ bar.

L'enthalpie libre standard de cette réaction est donnée ci-dessous, en fonction de la température T (exprimée en Kelvin) :

$$\Delta_r G^0(T) = -115.5.10^3 + 130.5 T$$
 en J.mol⁻¹

- 1. Déterminer l'enthalpie standard $\Delta_r H^0$ et l'entropie standard $\Delta_r S^0$ de cette réaction. Commenter le signe de $\Delta_r S^0$.
- 2. Calculer la constante d'équilibre K^0 à la température T=800 K.

3. On mélange dans un réacteur $4n_0$ mol de $\mathrm{HCl}_{(g)}$ et n_0 mol de $\mathrm{O}_{2(g)}$. La réaction se produit sous une pression totale P=1,0 bar constante et à la température T=800 K, maintenue constante par un thermostat.

Calculer l'enthalpie libre réactionnelle initiale $\Delta_r G_I$ de ce mélange et en déduire le sens d'évolution de la réaction.

4. On appelle taux de transformation τ du chlorure d'hydrogène à l'équilibre chimique le rapport ci-dessous :

$$\tau = \frac{\text{nombre de moles de HCl ayant réagi}}{\text{quantité initiale de HCl}}$$

Déterminer les fractions molaires x_{HCl} , x_{O_2} , $x_{\text{H}_2\text{O}}$ et x_{Cl_2} des quatre constituants gazeux à l'équilibre chimique, uniquement en fonction de τ .

- 5. Quelle est alors l'expression du quotient réactionnel Q en fonction de τ ?
- 6. On souhaite calculer τ grâce à une méthode numérique utilisant le langage Python. On utilisera l'algorithme de recherche de zéro par une méthode dichotomique. Considérons l'application $f: \tau \longmapsto K^0 Q$ où la valeur numérique de K^0 a déjà été calculée.
 - a) Écrire une fonction en langage python f(tau) qui prend pour paramètre le taux de transformation tau (float) et qui renvoie $f(\tau)$.
 - b) Écrire une fonction dicho(f,a,b,eps) qui calcule le zéro de f sur l'intervalle [a,b] avec une précision eps (float). On supposera que f n'admet qu'un seul zéro sur [a,b] et qu'elle change de signe : $f(a) \times f(b) < 0$.
- 7. En utilisant la calculatrice, en déduire la valeur approché de τ à l'équilibre chimique.

Données numériques générales :

Constante d'Avogadro : $N_A = 6.02.10^{23} \text{ mol}^{-1}$