- 1. Diffusion thermique en entier. Cours et exercices.
- 2. Thermochimie : en cours et en exercices y compris avec le théorème des combinaisons linéaires et la loi de Hess. **Un exercice** de thermodynamique chimique sera systématiquement posé.
- 3. En question de cours et en exercices :

ÉLÉMENTS DE PHYSIQUE STATISTIQUE

I. Le facteur de Boltzmann

- Nécessité de la physique statistique
- Introduction du facteur de Boltzmann
- Généralisation

II. Physique statistique quantique

- Description du modèle
- Normalisation de la probabilité. Fonction de partition
- Limites basse et haute température
- Énergie moyenne et écart-type
- Exemple du système à deux niveaux
- Énergie totale des N particules
 - Point de vue des variables aléatoires
 - Populations des niveaux d'énergie

III. Physique statistique classique

Les exercices de cette partie ne seront corrigés que mardi, mercredi et jeudi matin.

- Probabilité dans l'espace des phases. Exemples.
- Normalisation de la probabilité. Fonction de partition classique.
- Application aux particules ponctuelles. Calcul de $\langle v_x \rangle$, $\langle v_x^2 \rangle$, $\langle v^2 \rangle$. Vitesse quadratique moyenne.
- Degré de liberté quadratique. Théorème d'équipartition de l'énergie.
- Application au calcul de l'énergie interne des gaz parfaits : gaz parfait monoatomique et diatomique.

Questions de cours :

- 1. Donner les expressions possibles de l'activité chimique d'une espèce B.
- 2. Donner sans démonstration l'expression de $\Delta_r G$ en fonction des potentiels chimique puis montrer la relation entre $\Delta_r G$ et le quotient réactionnel Q_r .
 - Énoncer le critère d'équilibre chimique et en déduire la loi de Guldberg et Waage. Définir la constante d'équilibre K^{o} .
 - Donner les deux formes du critère d'évolution d'une réaction chimique.
- 3. Donner sans démonstration les trois relations liant $\Delta_r G^{\rm o}, \Delta_r S^{\rm o}$ et $\Delta_r H^{\rm o}$.
 - Démontrer la loi d'évolution de la constante d'équilibre K^{o} en fonction de la température (loi de Van't Hoff).
 - Énoncer l'approximation d'Ellingham.
- 4. Énoncer la loi donnant la chaleur échangée entre un système et une source de chaleur pour une évolution monobare et monotherme en fonction de $\Delta_r H^{\rm o}$.
- 5. Définir les limites basse et haute température pour une particule pouvant occuper K niveaux d'énergie $\varepsilon_1, ..., \varepsilon_K$ (dans un ensemble de particules sans interactions en équilibre thermodynamique avec un thermostat à la température T).

Physique - Chimie / Programme de colles n°8

- 6. Ensemble de particules sans interaction en équilibre thermodynamique avec un thermostat à la température T, pouvant occuper K niveaux d'énergie $\varepsilon_1, ..., \varepsilon_K$. Énoncer la loi de probabilité pour une particule d'être sur le niveau ε_k . Définir la fonction de partition $Z(\beta)$ et montrer la relation entre l'énergie moyenne $\langle \varepsilon \rangle$ et $Z(\beta)$ puis entre l'écart-type $\Delta \varepsilon$ et $Z(\beta)$.
- 7. Définir un degré de liberté quadratique. Énoncer le théorème d'équipartition de l'énergie.
- 8. Justifier par le théorème d'équipartition de l'énergie les expressions des énergies internes des gaz parfaits monoatomique et diatomique.