TD n° 14: GRANDEURS STANDARD

Exercice 1

On considère la réaction de dissociation de l'ammoniac selon l'équation - bilan : 2 $\mathrm{NH}_{3(g)}=3~\mathrm{H}_{2(g)}+\mathrm{N}_{2(g)}.$ Déterminer $\Delta_r G^0(\mathrm{T})$ en fonction de la température T. Application numérique : pour T = 400K, calculer $\Delta_r G^0$ ainsi que la constante d'équilibre K^0 .

Données à 298 K

Constituant	$NH_{3(g)}$	$H_{2(g)}$	$N_{2(g)}$
$\Delta_f H^0 \text{ (kJ.mol}^{-1)}$	-46,1		
$S_m^0 (\mathrm{J.K^{-1}.mol^{-1}})$	192,3	191,5	130,6

Exercice 2

À diverses températures T, on relève les valeurs correspondantes des enthalpies libres standard $\Delta_r G^0$ relatives aux réactions (1) et (2):

$$4 Cu_{(s)} + O_{2(g)} = 2 Cu_2O_{(s)}$$
 (1)
$$2 Cu_{(s)} + O_{2(g)} = 2 CuO_{(s)}$$
 (2)

Données:

T(K)	300	800
$\Delta_r G_1^0 \text{ (kJ.mol}^{-1)}$	-300	-230
$\Delta_r G_2^0 \text{ (kJ.mol}^{-1})$	-260	-170

On suppose par ailleurs que $\Delta_r H^0$ et que $\Delta_r S^0$ sont indépendantes de T pour les deux réactions :

- 1) Déterminer $\Delta_r H_k^0$ et $\Delta_r S_k^0$ (k=1,2) pour les deux réactions.
- 2) Soit $CuO_{(s)} + Cu_{(s)} = Cu_2O_{(s)}$. Déterminer $\Delta_r G_3^0(T)$ pour cette réaction.
- 3) Soit 2 $\operatorname{Cu}_2\operatorname{O}_{(s)} + \operatorname{O}_{2(q)} = 4 \operatorname{CuO}_{(s)}$. Déterminer $\Delta_r G_4^0(T)$ pour cette réaction.

Exercice 3

Déterminer l'enthalpie standard de la réaction (1) à 25°C à partir des données ci-dessous (enthalpies standards données à 25°C).

(1)
$$3 C_{(s)} + 4 Al_{(s)} = Al_4 C_{3(s)}$$

Données:

- $\begin{array}{ll} \text{(a) } 9\:\mathrm{C}_{(s)} + 2\:\mathrm{Al_2O_{3(s)}} = 6\:\mathrm{CO}_{(g)} + \mathrm{Al_4C_{3(s)}} & \Delta_r H^0 = 2\:559\:\mathrm{kJ.mol^{-1}} \\ \text{(b) } 1/2\:\mathrm{O}_{2(g)} + \mathrm{CO}_{(g)} = \mathrm{CO}_{2(g)} & \Delta_r H^0 = -283.0\:\mathrm{kJ.mol^{-1}} \\ \text{(c) } \mathrm{C}_{(s)} + \mathrm{O}_{2(g)} = \mathrm{CO}_{2(g)} & \Delta_r H^0 = -393.5\:\mathrm{kJ.mol^{-1}} \\ \text{(d) } 3/2\:\mathrm{O}_{2(g)} + 2\:\mathrm{Al}_{(s)} = \mathrm{Al_2O_{3(s)}} & \Delta_r H^0 = -1\:676\:\mathrm{kJ.mol^{-1}} \end{array}$ (d) $3/2 O_{2(g)} + 2 Al_{(s)} = Al_2 O_{3(s)}$

Exercice 4

Le sulfate de barvum se décompose par chauffage en oxyde de baryum(II) et en trioxyde de soufre selon l'équation-bilan : $BaSO_{4(s)} = BaO_{(s)} + SO_{3(g)}$.

Données à 298 K:

Constituant	$BaSO_{4(s)}$	$BaO_{(s)}$	$SO_{3(g)}$
$S^0 (J.K^{-1}.mol^{-1})$	132	70,5	257
$\Delta_f G^0 \text{ (kJ.mol}^{-1})$	- 1360	- 525	- 371

On se place dans l'approximation d'Ellingham.

- 1) Calculer $\Delta_r S^0$ et interpréter son signe.
- 2) Calculer $\Delta_r G^0(T)$ en fonction de la température.