
TP n°3 : ÉTUDE D'UN FILTRE PASSE-BAS DU DEUXIÈME ORDRE

BUT

Tracer expérimentalement le diagramme du gain G et de la phase φ en fonction de $\log f$ pour un filtre passe-bas du second ordre. En déduire les paramètres du filtre : Q et f_0 .

1 Montage

Réaliser le montage ci-dessous avec C = 500 nF; bobine telle que $L \approx 10 \, m$ H et de résistance interne R_L . Mesurer précisément les valeurs de C, L, R_L au RLC-mètre. R' est une résistance variable (boîte de résistances).

La tension $u_e(t)$ est sinusoïdale, de pulsation ω et d'amplitude $U_{me}:u_e(t)=U_{me}\cos{(\omega t)}$. Montrer que la fonction de transfert de ce filtre se met sous la forme :

$$\underline{H}(j\omega) = \frac{\underline{u}_s(t)}{\underline{u}_e(t)} = \frac{1}{1 + j\frac{1}{Q}\left(\frac{\omega}{\omega_0}\right) - \left(\frac{\omega}{\omega_0}\right)^2}$$

avec $\omega_0 = 1/\sqrt{LC}$ et $Q = \frac{1}{R' + R_L} \sqrt{\frac{L}{C}}$. Calculer les valeurs numériques de ω_0 et $f_0 = \omega_0/2\pi$ ainsi que la valeur de R' pour que Q = 1,0

2 Manipulation

- La tension d'entrée sinusoïdale est d'amplitude $U_{me} = 10,0$ V. Veiller à supprimer une éventuelle composante continue à l'aide de la touche adéquate du générateur.
- U_{me} et U_{ms} étant les amplitudes des tensions d'entrée et de sortie du filtre, on mesure ces grandeurs à l'aide de l'oscilloscope (mesure d'amplitude).

- Le déphasage φ de u_s par rapport à u_e se mesure à l'oscilloscope grâce aux curseurs verticaux permettant de mesurer le décalage temporel de la voie 2 (affichant u_s) par rapport à la voie 1 (affichant u_e). Attention au signe!
- Mesurer U_{me} , U_{ms} et le décalage temporel τ de u_s par rapport à u_e en fonction de la fréquence f variant entre 200 Hz et 6000 Hz (il faudra veiller à reserrer les mesures au voisinage de la résonance). Reporter les valeurs de f, G (gain) et φ (déphasage, en degrés) dans un tableau de mesure.
- Tracer les graphes du gain G en fonction de f et du déphasage φ directement sur deux feuilles de papier semi-log.

3 Exploitation des graphes de gain et de phase

- 1. Déduire f_0 du diagramme de phase.
- 2. Mesurer Q à l'aide du diagramme de gain.
- 3. Comparer aux valeurs attendues.