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I. Champ électrostatique

1) Domaine de l’électrostatique

L’électrostatique étudie les propriétés électromagnétiques de distri-
butions de charges électriques qui sont macroscopiquement immobiles
dans le repère d’étude (R). Cela signifie que la densité de courant
électrique ~j(M, t) est nulle en tout point M ∈ E et à tout instant t :

∀M ∈ E , ∀ t, ~j(M, t) = −→0

Par la suite on appellera distribution de charge statique un couple
(ρ,−→0 ) où ρ est une densité volumique de charges stationnaire définie
sur E telle que ρ : M ∈ E 7−→ ρ(M). Le domaine chargé associé à
cette distribution est l’ensemble des points M ∈ E , défini par :

Dc = {M ∈ E | ρ(M) 6= 0 }

2) Définition d’un champ électrostatique

Considérons une distribution de charge statique de domaine chargé
Dc et une charge ponctuelle qT , appelée charge ponctuelle test
placée en un point M .

. On constate expérimentalement que Dc exerce sur qT une force−→
Fél, appelée force électrique, ayant les deux propriétés suivantes :

• .

•

Exemple : champ électrostatique créé par une charge ponc-
tuelle
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•

•

II. Circulation d’un champ vectoriel

1) Circulation d’un champ vectoriel

Définition (Circulation)

Soit ~a(M, t) un champ vectoriel défini en tout point M ∈ E et
à chaque instant t. Soit une courbe C fixe dans (R) reliant deux
points A et B. On appelle circulation de ~a le long de C l’intégrale
curviligne :

ΓC (~a,A→ B, t) =
∫ B

A,C
~a(M, t).−→d`M

Remarques :

• L’intégrale se calcule à t constant. On parle de la circulation à
l’instant t.

• Dans le cas d’un champ vectoriel stationnaire ~a(M) la circulation
ne dépend plus du temps et on a :

ΓC (~a,A→ B) =
∫ B

A,C
~a(M).−→d`M
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Propriété :

ΓC (~a,B → A, t) = −ΓC (~a,A→ B, t)

Cas particulier d’une courbe fermée.

Si CF est une courbe fermée il est nécessaire de l’orienter pour fixer
le sens du vecteur déplacement élémentaire −→d`M .

2) Champ vectoriel à circulation conservative

Définition (Champ vectoriel à circulation conservative)
Soit ~a(M, t) un champ vectoriel défini en tout point M ∈ E et à

chaque instant t. On dit que ~a est à circulation conservative si et
seulement si, pour toute courbe fermée orientée CF fixe dans
(R) et pour tout t, on a :

ΓCF
(~a, t) =

∮
CF

~a(M, t).−→d`M = 0

Conséquence :
• Si ~a est un champ vectoriel à circulation conservative, alors pour

tout couple de points A et B et pour tout t on a :

ΓC (~a,A→ B, t) indépendante de C

Autrement dit, la circulation de ~a entre deux points quelconques
A et B ne dépend pas de la courbe C qui relie ces deux points (on
dit aussi que la circulation ne dépend pas du chemin suivi pour
aller de A à B).

• Réciproquement : si pour tout couple de points A et B et pour
tout t, la circulation ΓC (~a,A→ B, t) ne dépend pas de la courbe
C reliant A et B, alors ~a est à circulation conservative.
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.

3) Potentiel scalaire associé à un champ vectoriel à cir-
culation conservative

Considérons un champ vectoriel ~a à circulation conservative. On
va reprendre la même démarche que pour une force conservative en
mécanique à laquelle on a associé une énergie potentielle.

De la même façon, on va voir qu’il est possible d’associer à ~a un
champ scalaire f(M, t), appelé potentiel scalaire associé à ~a et que
l’on définit de la façon suivante :

On choisit un point Ω quelconque mais fixé et on pose :

fΩ(M, t) = −ΓC (~a,Ω→M, t) = −
∫ B

A,C
~a(N, t).−→d`N

où la circulation est calculée le long d’une courbe quelconque C reliant
Ω et M : le résultat ne dépend pas du choix de C . Il ne dépend que
de M et du temps t (et bien sûr du choix de Ω).

z

• y

x

O

z

• y

x

O

On remarque que :
∀ t, fΩ(Ω, t) = 0

On dit que fΩ est le potentiel scalaire associé à ~a avec origine en Ω.

Propriétés :
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.

Réciproquement, soit ~a un champ vectoriel pouvant s’écrire sous
la forme ~a(M, t) = −−−→grad f(M, t) en tout point M ∈ E et à chaque
instant t, f(M, t) étant un champ scalaire. Alors pour toute courbe
fermée orientée CF on a :

En conclusion on retiendra que :

4) Rotationnel d’un champ vectoriel

Introduction du rotationnel

On considère un champ vectoriel ~a(M, t) à circulation conservative
et on étudie la situation suivante :

z

• y

x

O
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Définition (Rotationnel en coordonnées cartésiennes)
Soit ~a(M, t) un champ vectoriel à circulation conservative ou
non dont l’expression en coordonnées cartésiennes s’écrit :

~a(M, t) = ax(x, y, z, t)−→ex + ay(x, y, z, t)−→ey + az(x, y, z, t)−→ez

Le rotationnel de ~a, noté −→rot~a est un champ vectoriel défini en co-
ordonnées cartésiennes par :

−→rot~a =
Å
∂az
∂y
− ∂ay

∂z

ã
−→ex +

Å
∂ax
∂z
− ∂az

∂x

ã
−→ey +

Å
∂ay
∂x
− ∂ax

∂y

ã
−→ez

Remarques :

Théorème
Si ~a est un champ vectoriel à circulation conservative, alors−→rot~a(M, t) = ~0 en tout point M ∈ E et pour tout t.

5) Théorème de Stokes

Le lien entre la circulation d’un champ vectoriel ~a et son rotationnel
est donné par le théorème de Stokes. La situation géométrique est la
suivante :

Théorème de Stokes
Soit ~a un champ vectoriel à circulation conservative ou non, CF

une courbe fermée orientée et S une surface quelconque s’appuyant
sur CF , orientée par la règle de la main droite. Alors :

ΓCF
(~a, t) = Φ

Ä−→rot~a/S
ä

c’est à dire, de façon plus explicite :∮
CF

~a(M, t).−→d`M =
∫∫

S

−→rot~a(N, t).−→dSN

Remarque :

Dans le théorème de Stokes la surface S est absolument quel-
conque pourvu qu’elle s’appuie sur CF . Un point remarquable à no-
ter est donc que si S1 et S2 sont deux surfaces qui s’appuient sur la
même courbe fermée CF , alors :

ΓCF
(~a, t) = Φ

Ä−→rot~a/S1
ä

= Φ
Ä−→rot~a/S2

ä
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Dans la pratique on a souvent des courbes fermées planes et on
applique le théorème de Stokes de la façon suivante :

6) Caractérisation d’un champ à circulation conserva-
tive

III. Équations de Maxwell de l’électrosta-
tique

Les équations de Maxwell sont les postulats de l’électromagnétisme.
Elles ont été énoncées pour la première fois par James Maxwell en
1864 pour synthétiser (résumer) tous les résultats théoriques et
expérimentaux de l’électromagnétisme accumulés de façon dis-
parate par les physiciens depuis le XVIII ème siècle. Il y a quatre équa-
tions de Maxwell et le point remarquable est qu’elles sont suffisantes
pour retrouver toutes les lois de l’électromagnétisme.

On en donne ici la version dans le cadre de l’électrostatique : seules
deux équations suffisent pour le moment ; les deux autres équations
seront données plus tard, lors de l’étude des champs magnétiques.

1) Énoncé

Considérons une distribution de charge statique (ρ,−→0 ), caractérisée
par une densité volumique de charges stationnaire ρ définie en tout
point M ∈ E . Soit Dc le domaine chargé associé.

Si −→E est le champ électrostatique créé par cette distribution, alors
on a pour tout point M ∈ E :

div−→E (M) = ρ(M)
ε0

et
−→rot−→E (M) = ~0
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2) Conséquence de l’équation de Maxwell-Faraday. Po-
tentiel électrostatique

a) Le champ électrostatique est à circulation conservative

b) Potentiel électrostatique V

.

c) Interprétation physique de V

Soit qT une charge ponctuelle placée dans le champ électrosta-
tique créé par une distribution de charge statique :

3) Équation de Poisson
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4) Théorème de Gauss

5) Théorème de superposition

Soient (ρ1,
−→0 ) une distribution de charge statique créant un champ

électrostatique −→E1 et (ρ2,
−→0 ) une distribution de charges statique

créant un champ électrostatique −→E2

On appelle distribution de charge statique superposée la distribution
(ρ = α1ρ1 + α2ρ2,

−→0 ) où α1 et α2 sont deux nombres réels.

Théorème de superposition
La distribution superposée crée le champ électrostatique−→
E = α1

−→
E1+α2

−→
E2 auquel on peut associer le potentiel électrostatique

V = α1V1 + α2V2

La démonstration de ce théorème repose sur la linéarité des opéra-
teurs div, −→rot et −−→grad et sur le théorème ci-dessous (qu’on admettra) :

Théorème
Si un champ vectoriel ~a(M, t) possède une divergence et un rota-

tionnel nuls pour toutM ∈ E et pour tout t, alors ce champ vectoriel
est nul en tout point M ∈ E et à chaque instant t :

∀M ∈ E , ∀ t, div~a(M, t) = 0 et −→rot~a(M, t) = −→0
=⇒ ∀M ∈ E , ∀ t, ~a(M, t) = −→0
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IV. Symétries du champ électrostatique

1) Introduction aux symétries

Les définitions qui suivent sont valables pour pour tout type de
champs scalaires ou vectoriels, stationnaires ou non. On les utilisera
couramment en électromagnétisme. On suppose que les champs sca-
laires et vectoriels sont définis en tout point de l’espace M ∈ E .

a) Plans de symétrie et d’antisymétrie

Définition 1
On dit qu’un champ scalaire f(M, t) admet :
1. un plan de symétrie noté Πsym si et seulement si :

∀M ∈ E , ∀ t, f(M ′, t) = f(M, t)

où M ′ est le point symétrique de M par rapport au plan Πsym.
2. un plan de d’anti-symétrie noté Πantisym si et seulement si :

∀M ∈ E , ∀ t, f(M ′, t) = − f(M, t)

oùM ′ est le point symétrique deM par rapport au plan Πantisym.

Définition 2
On dit qu’un champ vectoriel ~a(M, t) admet :
1. un plan de symétrie noté Πsym si et seulement si :

∀M ∈ E , ∀ t, ~a(M ′, t) = sym~a(M, t)

où M ′ est le point symétrique de M par rapport au plan Πsym
et où sym~a est le vecteur symétrique du vecteur ~a par rapport
au plan Πsym.

2. un plan de d’anti-symétrie noté Πantisym si et seulement si :

∀M ∈ E , ∀ t, ~a(M ′, t) = − sym~a(M, t)

oùM ′ est le point symétrique deM par rapport au plan Πantisym
et où sym~a est le vecteur symétrique du vecteur ~a par rapport
au plan Πantisym.
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Cas particulier très courant :

b) Invariance par translation

Définition
Le point M étant repéré par ses coordonnées cartésiennes (x, y, z),

on dit qu’un :
• champ scalaire f(M, t) = f(x, y, z, t) est invariant par transla-

tion le long de l’axe Ox si et seulement si f ne dépend pas de la
coordonnée x.

• champ vectoriel ~a(M, t) = ~a(x, y, z, t) est invariant par transla-
tion le long de l’axe Ox si et seulement si ~a ne dépend pas de la
coordonnée x.

Exemple :

Un champ des températures invariant par translation le long de

Ox : T (M, t) = T (y, z, t) mais ne dépend pas de x.

Remarques :

c) Invariance par rotation autour d’un axe

Soit ∆ un axe. On décide de le prendre comme axe Oz des coordon-
nées et on repère les pointsM ∈ E par leurs coordonnées cylindriques
(r, θ, z).

z

• y

x

∆

O
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On exprime ensuite f et ~a dans le système des coordonnées cylin-
driques :

f(M, t) = f(r, θ, z, t)

et

~a(M, t) = ar(r, θ, z, t)−→er + aθ(r, θ, z, t)−→eθ + az(r, θ, z, t)−→ez

Définition. Invariance par rotation.
On dit que :

• le champ scalaire f(M, t) = f(r, θ, z, t) est invariant par rotation
autour de l’axe ∆ = Oz si et seulement si f ne dépend pas de
l’angle θ.

• le champ vectoriel ~a(M, t) est invariant par rotation autour de
l’axe ∆ = Oz si et seulement si aucune de ses composantes
cylindriques ar, aθ et az ne dépend de l’angle θ.

•∆

•∆

2) Symétries du champ électrostatique

On se base sur le principe de Curie :

Principe de Curie :

Lorsque certaines causes produisent certains effets, alors les élé-
ments de symétrie des causes doivent se retrouver dans les effets pro-
duits.

Pour notre cas :

Cause Effet produit
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On en déduit :

symétries de −→E

Soit une distribution de charge statique (ρ,~0) caractérisée par une
densité volumique de charge ρ(M). Alors :
1. Tout plan de symétrie (resp. plan d’antisymétrie) de ρ (cause)

est un plan de symétrie (resp. plan d’antisymétrie) de la force
électrique −→Fél(M) exercée sur une charge ponctuelle test qT (effet
produit) et donc du champ électrostatique −→E (M) = −→Fél(M)/qT
créé.

2. Si ρ est invariante par translation (le long de Oz par exemple),
alors −→Fél(M) donc −→E (M) est invariant par translation.

3. Si ρ est invariante par rotation autour d’un axe ∆ = Oz alors−→
Fél(M) donc −→E (M) est aussi invariant par rotation autour de
∆.

V. Calculs classiques de champ et potentiels
électrostatiques

Il est possible de calculer des champ et potentiel électrostatique plus
intéressants que ceux créés par des charges ponctuelles qui étaient
notre seul exemple jusqu’à présent. La seul contrainte est qu’il y ait
beaucoup de symétries.

À faire sur feuille.

1) Champ créé par une boule uniformément chargée

2) Champ créé par un cylindre infini uniformément
chargé

3) Champ créé par un plan infini uniformément chargé

4) Relation de passage

5) Application au condensateur plan
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VI. Théorie du champ gravitationnel

1) Définition : champ de gravitation

La théorie du champ électrostatique et du potentiel électrostatique
est complètement transposable au champ de gravitation.

Un ensemble de corps (D) exerce sur une masse ponctuellem (masse
de dimension suffisamment petite pour être assimilée à un point) pla-
cée en un point M une force gravitationnelle attractive −→Fg(M).

•
M−→

Fg(M)

Ensemble de
corps (D)

On constate de façon expérimentale que −→Fg(M) est proportionnelle
à la masse m qui est placée en M , ce qui amène à écrire :

−→
Fg(M) = m

−→
G (M)

Ce champ vectoriel −→G (M) est par définition le champ de gravitation
créé au point M par l’ensemble des corps (D).

La dimension d’un champ de gravitation est donc : [G] = N.kg−1

= m.s−2.

Exemple : Champ de gravitation créé par une masse ponctuelle
Dans le cas particulier où l’ensemble des corps (D) est réduit à une

seule masse ponctuelle mP placée en un point P , la force gravitation-
nelle est donnée par la loi de Newton, analogue à la loi de Coulomb
de l’électrostatique :

−→
Fg(M) = −G mmP

‖
−−→
PM‖2

−→u PM

où G est la constante de gravitation.

•

P (mP )

•
M(m)

−→u PM

−→G (M)

On a donc :

−→
G (M) = −G mP

‖
−−→
PM‖2

−→u PM = −GmP

−−→
PM

‖
−−→
PM‖3

Ainsi, on passe du champ de gravitation au champ électrostatique
par les changements suivants :

Électrostatique Gravitation

Charge ponctuelle qp Masse ponctuelle mP

Champ électrostatique −→E (M) Champ de gravitation −→G (M)

1
4πε0

−G

Tableau 1
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Numériquement :

1
4πε0

= 9.109 uSI ; ε0 = 8,85.10−12 F.m−1 ;

G = 6,67.10−11 m3.kg−1.s−1

2) Équations locales du champ de gravitation

On commence par définir une distribution de masses caractérisée
par une masse volumique µ (analogue de la charge volumique). On
définit le domaine de masses Dm = {M ∈ E | µ(M) 6= 0 }.

Les équations locales vérifiées par le champ de gravitation sont
analogues à celles de l’électrostatique. Pour tout M ∈ E :

−→rot−→G (M) = −→0 et div−→G (M) = − 4πGµ(M)

−→
G (M) est à circulation conservative. Il existe donc un potentiel

gravitationnel (non unique, défini à une constante près) Φg(M) tel
que :

−→
G (M) = −−−→grad Φg

La dimension de Φg est celle de [G]× m = N.kg−1.m = m2.s−2.

En général, on prend Φg = 0 à l’infini lorsque la distribution de
masse Dm est d’extension finie.

Φg(M) est aussi continu vis à vis des coordonnées d’espace (car il
est dérivable).

Tout comme pour le potentiel électrostatique, le potentiel gravita-
tionnel est lié à l’énergie potentielle d’une masse ponctuelle m placée
dans le champ de gravitation −→G :

Egravit
P (M) = mΦg(M)

Ainsi, le potentiel gravitationnel peut être défini comme étant
l’énergie potentielle de gravitation d’une masse ponctuelle m = 1 kg
plongée dans un champ de gravitation −→G .

Les expressions de Φg(M) peuvent se déduire de celles du potentiel
électrostatique V (M) au moyen des transformations du tableau 1.

Exemple : masse ponctuelle mP placée en P :

Φg(M) = −G mP

‖
−−→
PM‖

3) Équation de Poisson pour Φg

De div−→G (M) = − 4πGµ(M) et −→G (M) = −−−→grad Φg(M), on déduit
que le potentiel gravitationnel vérifie une équation de Poisson :

∆Φg(M) = 4πGµ(M)

4) Théorème de Gauss gravitationnel

On le déduit de div−→G (M) = − 4πGµ(M) en utilisant le théorème
d’Ostrogradski. On aboutit à :

Pour toute surface fermée SF , Φsortant(
−→
G /SF ) = − 4πGMint

où Mint est la masse intérieure à SF .

Le flux du champ gravitationnel sorant d’une surface fermée quel-
conque est égal à − 4πG fois la masse intérieure à cette surface.

Enfin, le champ de gravitation possède les mêmes types symétries
et d’invariances que le champ électrostatique.
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