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I. Champ électrostatique

1) Domaine de I’électrostatique

L’électrostatique étudie les propriétés électromagnétiques de distri-
butions de charges électriques qui sont macroscopiquement immobiles
dans le repére d’étude (R). Cela signifie que la densité de courant
électrique j(M,t) est nulle en tout point M € & et a tout instant ¢ :

VM e &, Vi, J(M,t) =0

Par la suite on appellera distribution de charge statique un couple
(p, ﬁ) ou p est une densité volumique de charges stationnaire définie
sur & telle que p : M € & —— p(M). Le domaine chargé associé a
cette distribution est ’ensemble des points M € &, défini par :

De={Me&|p(M)#0}

2)

Définition d’un champ électrostatique

Considérons une distribution de charge statique de domaine chargé

9. et une charge ponctuelle qr, appelée charge ponctuelle test
placée en un point M.

. On constate expérimentalement que &, exerce sur gr une force

Fy, appelée force électrique, ayant les deux propriétés suivantes :

Exemple :

tuelle

champ électrostatique créé par une charge ponc-
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II. Circulation d’'un champ vectoriel

1) Circulation d’un champ vectoriel

Définition (Circulation)

Soit @(M,t) un champ vectoriel défini en tout point M € & et
a chaque instant ¢t. Soit une courbe ¥ fixe dans (R) reliant deux
points A et B. On appelle circulation de a le long de € l’intégrale
curviligne :

B —
Ty (@, A — B,t) = /A(gd’(M, £).dlns

Remarques :

o L’intégrale se calcule a t constant. On parle de la circulation a
I'instant .

o Dauns le cas d’un champ vectoriel stationnaire @(M) la circulation
ne dépend plus du temps et on a :

B —
Ty (@, A — B) = / G(M).dl s
AE
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Propriété :

‘ch((i,B—)A,t) — —Fg(d’,A—)B,t)‘

Cas particulier d’une courbe fermée.

Si @ est une courbe fermée il est nécessaire de l’orienter pour fixer

, .y .
le sens du vecteur déplacement élémentaire d/ ;.

2) Champ vectoriel a circulation conservative

Définition (Champ vectoriel a circulation conservative)

Soit @(M,t) un champ vectoriel défini en tout point M € & et a
chaque instant t. On dit que @ est a circulation conservative si et
seulement si, pour toute courbe fermée orientée % fixe dans
(R) et pour tout ¢, on a :

Ty, (@,t) = f (M, t).dbyr = 0

Cr

Conséquence :

e Sid est un champ vectoriel & circulation conservative, alors pour
tout couple de points A et B et pour tout ¢ on a :

I'y(d, A — B,t) indépendante de €

Autrement dit, la circulation de d entre deux points quelconques
A et B ne dépend pas de la courbe € qui relie ces deuz points (on
dit aussi que la circulation ne dépend pas du chemin suivi pour

aller de A a B).

e Réciproquement : si pour tout couple de points A et B et pour
tout ¢, la circulation 'y (@, A — B, t) ne dépend pas de la courbe
@ reliant A et B, alors @ est a circulation conservative.
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3) Potentiel scalaire associé a un champ vectoriel a cir-
culation conservative

Considérons un champ vectoriel @ a circulation conservative. On
va reprendre la méme démarche que pour une force conservative en
mécanique a laquelle on a associé une énergie potentielle.

De la méme fagon, on va voir qu’il est possible d’associer a @ un
champ scalaire f(M,t), appelé potentiel scalaire associé a d et que

I'on définit de la facon suivante :

On choisit un point €2 quelconque mais fixé et on pose :

B
FolM,1) = ~Tl@, @ M,t) = — [ a(N o).l
A

ou la circulation est calculée le long d’une courbe quelconque % reliant
Q et M : le résultat ne dépend pas du choix de %. Il ne dépend que
de M et du temps ¢ (et bien str du choix de Q).

On remarque que :

¥t fa(2,t) = 0]

On dit que fq est le potentiel scalaire associé & a@ avec origine en ).

Propriétés :
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Réciproquement, soit @ un champ vectoriel pouvant s’écrire sous
la forme d(M,t) = —gﬂ)if(M, t) en tout point M € & et a chaque
instant ¢, f(M,t) étant un champ scalaire. Alors pour toute courbe
fermée orientée € on a :

En conclusion on retiendra que :

4) Rotationnel d’un champ vectoriel
Introduction du rotationnel

On considere un champ vectoriel @(M,t) a circulation conservative
et on étudie la situation suivante :
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Définition (Rotationnel en coordonnées cartésiennes)

Soit @(M,t) un champ vectoriel & circulation conservative ou
non dont I’expression en coordonnées cartésiennes s’écrit :

J(M, t) = ax($7y, Z7t) e_az> + ay(x,y, Z,t) e—y> + az(xvyv Z,t) e—z>

. = 2 TR = . RBg
Le rotationnel de d, noté rot @ est un champ vectoriel défini en co-
ordonnées cartésiennes par :

— . (Oa, 8ay>_> (8% 8az>_> <6ay 6az>_>
rota = <8y 0z * 0z ax ) Y ox oy ez

Remarques :

Théoréme

5) Théoréme de Stokes

Le lien entre la circulation d’un champ vectoriel @ et son rotationnel
est donné par le théoréeme de Stokes. La situation géométrique est la
suivante :

Théoréme de Stokes

Soit @ un champ vectoriel & circulation conservative ou non, ¢
une courbe fermée orientée et S une surface quelconque s’appuyant
sur 6, orientée par la regle de la main droite. Alors :

Tisp (G, 1) = @ (1ot @/5)

c’est a dire, de fagon plus explicite :

7% o, £).dbas = / /S rot @V, )38y

§ a est un champ vectoriel & circulation conservative, alors
rot @(M,t) = 0 en tout point M € & et pour tout ¢.

Remarque :

Dans le théoreme de Stokes la surface S est absolument quel-
conque pourvu qu’elle s’appuie sur . Un point remarquable a no-
ter est donc que si S7 et Sy sont deux surfaces qui s’appuient sur la
méme courbe fermée 6, alors :

Ty (@,t) = @ (rot @)1 ) = @ (rot @/Ss)
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Dans la pratique on a souvent des courbes fermées planes et on
applique le théoréeme de Stokes de la fagon suivante :

6) Caractérisation d’un champ a circulation conserva-
tive

I1I. Equations de Maxwell de l’électrosta-
tique

Les équations de Maxwell sont les postulats de l’électromagnétisme.
Elles ont été énoncées pour la premiére fois par James Maxwell en
1864 pour synthétiser (résumer) tous les résultats théoriques et
expérimentaux de l’électromagnétisme accumulés de facon dis-
parate par les physiciens depuis le X VIIT®™® siécle. Il y a quatre équa-
tions de Maxwell et le point remarquable est qu’elles sont suffisantes
pour retrouver toutes les lois de [’électromagnétisme.

On en donne ict la version dans le cadre de l’électrostatique : seules
deuz équations suffisent pour le moment; les deuzr autres équations
seront données plus tard, lors de l’étude des champs magnétiques.

1) Enoncé

Considérons une distribution de charge statique (p, 0), caractérisée
par une densité volumique de charges stationnaire p définie en tout
point M € &. Soit Z, le domaine chargé associé.

Si ﬁ est le champ électrostatique créé par cette distribution, alors
on a pour tout point M € & :

p(M)
€0

div E (M) =

et

rot E(M) =0
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2) Conséquence de I’équation de Maxwell-Faraday. Po-
tentiel électrostatique

a) Le champ électrostatique est a circulation conservative

c) Interprétation physique de V

Soit gr une charge ponctuelle placée dans le champ électrosta-

b) Potentiel électrostatique V' . - >— T i
tique créé par une distribution de charge statique :

3) Equation de Poisson
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4) Théoréeme de Gauss

5) Théoréme de superposition

e .
Soient (p1, 0) une distribution de charge statique créant un champ
, . e . . .
électrostatique E7 et (p2, 0) une distribution de charges statique
créant un champ électrostatique Fo

On appelle distribution de charge statique superposée la distribution
(p = a1p1 + azp2, 0) ot ) et g sont deux nombres réels.

10

Théoréme de superposition

La distlilgution superposée crée le champ électrostatique

= a1 E1+as E5 auquel on peut associer le potentiel électrostatique
V=a01V1 +asVs

La démonstration de ce théoréme repose sur la linéarité des opéra-
e 1 P . ,
teurs div, rot et grad et sur le théoreéme ci-dessous (qu’on admettra) :

Théoréme

Si un champ vectoriel @(M,t) posseéde une divergence et un rota-
tionnel nuls pour tout M € & et pour tout ¢, alors ce champ vectoriel
est nul en tout point M € & et a chaque instant ¢ :

VM e &, Vi, diva(M,t) = 0 et tot@(M,t) = 0

—VYMe& Vi, aMt)=0
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IV. Symétries du champ électrostatique

1) Introduction aux symétries

Les définitions qui suivent sont wvalables pour pour tout type de
champs scalaires ou vectoriels, stationnaires ou non. On les utilisera
couramment en électromagnétisme. On suppose que les champs sca-
laires et vectoriels sont définis en tout point de l’espace M € &.

a) Plans de symétrie et d’antisymétrie

Définition 1

On dit qu'un champ scalaire f(M,t) admet :

1. un plan de symétrie noté Ilsy, si et seulement si :
VM e &, Vt, f(M',t) = f(M,t)

ou M’ est le point symétrique de M par rapport au plan Ilgym,.

2. un plan de d’anti-symétrie noté Ilaptisym si et seulement si :
VM e &, Vt, f(M' t)=— f(M,t)

ou M’ est le point symétrique de M par rapport au plan Ilantisym-

11

Définition 2

On dit qu'un champ vectoriel @(M,t) admet :

1. un plan de symétrie noté Ilgy,, si et seulement si :
VM e &, Vt, a(M',t) = syma(M,t)

ol M’ est le point symétrique de M par rapport au plan Il
et ou syma est le vecteur symétrique du vecteur @ par rapport
au plan Ilgyp,.

2. un plan de d’anti-symétrie noté Il,ntisym Si et seulement si :
VM e &, Vt, a(M',t) = —syma(M,t)

ou M’ est le point symétrique de M par rapport au plan Iangisym
et ou syma est le vecteur symétrique du vecteur @ par rapport

au plan Iantisym.
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Cas particulier trés courant :

b) Invariance par translation

Définition

Le point M étant repéré par ses coordonnées cartésiennes (z,y, z),
on dit qu’un :

o champ scalaire f(M,t) = f(z,y, z,t) est invariant par transla-
tion le long de l’axe Ox si et seulement si f ne dépend pas de la
coordonnée .

o champ vectoriel @(M,t) = d(x,y, z,t) est invariant par transla-
tion le long de I'axe Ox si et seulement si @ ne dépend pas de la
coordonnée .

Exemple :

Un champ des températures invariant par translation le long de

Ox : T(M,t) =T(y, z,t) mais ne dépend pas de z.

Remarques :

c) Invariance par rotation autour d’un axe

Soit A un axe. On décide de le prendre comme axe Oz des coordon-
nées et on repere les points M € & par leurs coordonnées cylindriques
(r,0,z).

12
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On exprime ensuite f et @ dans le systeme des coordonnées cylin-
driques :

f(Mat) :f(r,G,z,t)

et

a(M,t) = a(r,0,z,1t) s+ ag(r,0,z,t) e+ a,(r,0,z,t) e

Définition. Invariance par rotation.

On dit que :

o le champ scalaire f(M,t) = f(r,0, z,t) est invariant par rotation
autour de l'axe A = Oz si et seulement si f ne dépend pas de
I’angle 6.

o le champ vectoriel @(M,t) est invariant par rotation autour de
I’axe A = Oz si et seulement si aucune de ses composantes
cylindriques a,, ag et a, ne dépend de I'angle 6.

2) Symeétries du champ électrostatique
On se base sur le principe de Curie :
Principe de Curie :

Lorsque certaines causes produisent certains effets, alors les élé-
ments de symétrie des causes doivent se retrouver dans les effets pro-
dusts.

Pour notre cas :

Cause Effet produit

13
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On en déduit :

symétries de ﬁ

Soit une distribution de charge statique (p,0) caractérisée par une
densité volumique de charge p(M). Alors :

1. Tout plan de symétrie (resp. plan d’antisymétrie) de p (cause)
est un plan de symétrie (resp. plan d’antisymétrie) de la force
électrique Fy (M) exercée sur une charge ponctuelle test gp (effet
produit) et donc du champ électrostatique E(M ) = F’; (M)/qr
créé.

2. Si p est invariante par translation (le long de Oz par exemple),
alors ITQ:(M ) donc E

3. S_i>p est invariante par rotation autour d'un axe A = Oz alors
Fg(M) donc
A.

(M) est invariant par translation.

(M) est aussi invariant par rotation autour de

14

V. Calculs classiques de champ et potentiels
électrostatiques

Il est possible de calculer des champ et potentiel électrostatique plus
intéressants que ceux créés par des charges ponctuelles qui étaient
notre seul exemple jusqu’a présent. La seul contrainte est qu’il y ait
beaucoup de symétries.

A faire sur feuille.

1) Champ créé par une boule uniformément chargée

2) Champ créé par un cylindre infini uniformément
chargé

3) Champ créé par un plan infini uniformément chargé
4) Relation de passage

5) Application au condensateur plan
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VI. Théorie du champ gravitationnel

1) Définition : champ de gravitation

La théorie du champ électrostatique et du potentiel électrostatique
est completement transposable au champ de gravitation.

Un ensemble de corps (D) exerce sur une masse ponctuelle m (masse
de dimension suffisamment petite pour étre assimilée & un point) pla-

cée en un point M une force gravitationnelle attractive Fy(M).

g M

e

®,

Ensemble de
corps (

_>
On constate de facon expérimentale que Fy(M) est proportionnelle
a la masse m qui est placée en M, ce qui améne a écrire :

B (M) =m T ()]

Ce champ vectoriel a(M ) est par définition le champ de gravitation
créé au point M par ensemble des corps (D).

La dimension d’un champ de gravitation est donc : [G] = N.kg~!

= m.Si2.

Exemple : Champ de gravitation créé par une masse ponctuelle

Dans le cas particulier ot I'ensemble des corps (D) est réduit a une
seule masse ponctuelle mp placée en un point P, la force gravitation-
nelle est donnée par la lo¢ de Newton, analogue a la loi de Coulomb
de I’électrostatique :

_ mmp
Fy(M)=-G jIIPM||2 U py

ol G est la constante de gravitation.

A
P(mp)
On a donc :
H
_ mp = — _Cm PM
2(M) Gm PM G PW

Ainsi, on passe du champ de gravitation au champ électrostatique
par les changements suivants :

Electrostatique Gravitation

Charge ponctuelle g, Masse ponctuelle mp

Champ électrostatique E(M ) | Champ de gravitation a(M

1
471'50

-G

Tableau 1

15
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Numériquement :

=9.10° uSI; g = 8,85.1072 F.m™;
G =6,67.1071 m3 kg=l.s!

47‘1’60

2) Equations locales du champ de gravitation

On commence par définir une distribution de masses caractérisée
par une masse volumique p (analogue de la charge volumique). On
définit le domaine de masses Z,,, ={M € & | (M) #0}.

Les équations locales vérifiées par le champ de gravitation sont
analogues a celles de ’électrostatique. Pour tout M € & :

Tt G(M) =10 et divG(M)=—47G u(M)

a(M ) est & circulation conservative. Il existe donc un potentiel
gravitationnel (non unique, défini & une constante pres) ®4(M) tel

que :
GOn) = —grade,
2 2

La dimension de @, est celle de [G]x m = N.kg7l.m = m%.s™2.

En général, on prend ®, = 0 a l'infini lorsque la distribution de
masse %, est d’extension finie.

O, (M) est aussi continu vis & vis des coordonnées d’espace (car il
est dérivable).

Tout comme pour le potentiel électrostatique, le potentiel gravita-
tionnel est lié & I’énergie potentielle d’une masse ponctuelle m placée
dans le champ de gravitation

E}g)ravit(M> —m (I)g (M)

16

Ainsi, le potentiel gravitationnel peut étre défini comme étant
I’énergie potentielle de gravitation d’une masse ponctuelle m = 1 kg
plongée dans un champ de gravitation G .

Les expressions de ®,(M) peuvent se déduire de celles du potentiel
électrostatique V(M) au moyen des transformations du tableau 1.

Exemple : masse ponctuelle mp placée en P :

mp

3) Equation de Poisson pour o,

—
Dediv G (M) = — 47 G (M) et G (M) = — grad &,(M), on déduit
que le potentiel gravitationnel vérifie une équation de Poisson :

(AR (M) = 47 G (M) |

4) Théoréme de Gauss gravitationnel

On le déduit de div B(M ) = — 47 G u(M) en utilisant le théoreme
d’Ostrogradski. On aboutit a :

Pour toute surface fermée Sp, Qsortant(a /SF) = — 41 G My

ou Myt est la masse intérieure & Sg.

Le flux du champ gravitationnel sorant d’une surface fermée quel-
conque est égal a —4n G fois la masse intérieure d cette surface.

Enfin, le champ de gravitation posséde les mémes types symétries
et d’invariances que le champ électrostatique.



