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I. L’interaction magnétique

1) Origine

Il est connu depuis l’antiquité que certains corps dits aimantés ont
la propriété de s’attirer ou de se repousser. Taillés d’une certaine
manière, en forme de cylindres, ces corps possèdent deux faces in-
dissociables appelées respectivement face Nord (N ) et face Sud (S),
telles que :

• Deux faces identiques se repoussent :

NS

Répulsion

SN

• Deux faces différentes s’attirent :

SN

Attraction

SN

On ne peut jamais isoler une seule face : si on coupe un cylindre
aimanté en deux parties, on obtient deux aimants possédant chacun
sa face N et sa face S.

NS NS NS

On coupe
On recréé une face
N et une face S

2) Effet d’un courant sur un aimant

À partir du XIXème siècle, les physiciens se sont aperçus du lien qui
existait entre magnétisme et courant électrique.
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Expérience d’Oersted (1819) :

i

fil

N
S

Le courant i dans le fil rec-
tiligne fait dévier la boussole
(aimant)
Le sens de déviation change
avec le sens du courant

Expérience avec une bobine :

La boussole s’aligne avec l’axe de la bobine. Un renversement du
sens du courant la fait se retourner de 180°

3) Effet d’un aimant sur un courant

Expérience des rails de Laplace :
Un tube métallique est posé sur deux tiges métalliques parallèles,

aux bornes desquelles on branche un générateur. L’ensemble géné-
rateur + tiges + tube constitue un circuit fermé parcouru par un
courant i.

Si on place le tube à l’intérieur d’un aimant en U, il se déplace dans
un sens qui dépend du sens du courant i.

i

tige

tige
i

E i

tube

S

N

Tiges

tube −→v

aimant en U

Action d’un aimant sur un faisceau d’électrons

Un faisceau d’électrons émis par un filament chauffé à haute T est
dévié par un aimant.

e− S

N

4) Champ magnétique

Hypothèse d’Ampère :

Le magnétisme est un phénomène produit par des charges en mou-
vement, c’est à dire un courant électrique. Dans les aimants, ce sont
des courants microscopiques qui interviennent (mouvement des élec-
trons autour de noyaux).
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Définition de −→B :

Soit Dcourant un domaine de l’espace dans lequel il existe des cou-
rants électriques.

Dcourant

• M

−→
Fm

−→v

La présence de courants électrique entraîne l’existence d’une force
magnétique −→Fm exercée sur une charge ponctuelle test qT placée en
M avec un vecteur vitesse −→v . Cette force possède les trois propriétés
suivantes :

−→
Fm est


proportionnelle à qT

⊥−→v et elle est proportionnelle à ‖−→v ‖
−→
Fm = −→0 si −→v = −→0

On en déduit que :

−→
Fm = qT

−→v ∧
−→
B (M, t)

C’est la force de Lorentz. Cette relation définit le champ vectoriel−→
B , appelé champ magnétique. Il s’agit d’un champ vectoriel défini en
tout point de l’espace et à chaque instant t.

Unité :

[Fm] = [qT ] [v] [B] donc [B] = N.C−1.m−1.s = T (Tesla)

Schéma de l’interaction magnétique

Ordres de grandeur :

• Champ magnétique terrestre : composante horizontale
Bh ≈ 20 µT et composante verticale Bv ≈ 50 µT.

• Petit aimant B < 1 T (quelques dizaines à quelques centaines de
mT).

• Électromaimant : quelques T −→ 10 T −→ 35 T le plus fort
actuellement (avec courants supraconducteurs).

• Pour certaines étoiles à neutrons : B ≈ 1010 T
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II. Champs magnétiques stationnaires

1) Cadre de l’étude

Nous allons étudier les propriétés des champs magnétiques créés
par des courants stationnaires, c’est à dire indépendants du temps.
Les champ magnétiques créés par ces courants sont eux aussi station-
naires.
On considère une distribution de charges et de courants station-

naire (ρ,~j) définie en tout point M ∈ E :

ρ : M ∈ E 7−→ ρ(M) et ~j : M ∈ E 7−→ ~j(M)

On appelle domaine des courants Dcourant l’ensemble des points M
où ~j est non nul :

Dcourant =
¶
M ∈ E | ~j(M) 6= ~0

©
Il peut exister une densité volumique de charges ρ stationnaire mais

les lois expérimentales de l’électromagnétisme montrent que celle-ci
n’a strictement aucune influence sur le champ magnétique
produit 1. Seuls les courants sont responsables de l’existence de −→B .

2) Équations de Maxwell

Toutes les propriétés des champs magnétiques stationnaires sont
contenues dans deux équations posées pour la première fois par James
Maxwell en 1864.

1. ρ peut créer bien sûr un champ électrique stationnaire mais on ne s’occupe
ici que du champ magnétique.

Considérons une distribution de charge et de courant stationnaire
(ρ,−→j ). Si −→B est le champ magnétique stationnaire créé par cette
distribution, alors on a pour tout point M ∈ E :

div−→B (M) = 0

et
−→rot−→B (M) = µ0~j(M)

3) Conséquence de l’équation de Maxwell-Thomson
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. 4) Théorème d’Ampère

5) Théorème de superposition

Soient (ρ1,
−→
j1 ) et (ρ2,

−→
j2 ) deux distributions de charge et de courant

stationnaires créant respectivement un champ magnétique −→B1 et un
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champ magnétique −→B2

On appelle distribution de charge et de courant superposée la dis-
tribution (ρ = α1ρ1 +α2ρ2,

−→
j = α1

−→
j1 +α2

−→
j2 ) où α1 et α2 sont deux

nombres réels.

Théorème de superposition
La distribution superposée crée le champ magnétique stationnaire−→
B = α1

−→
B1 + α2

−→
B2.

6) Symétries

Comme en électrostatique, on se base sur le principe de Curie :

Cause Effet produit

Cependant, comme la force magnétique −→Fm n’est pas à proprement
parler un champ vectoriel puisqu’elle dépend non seulement de la
position de la particule ponctuelle test qT mais aussi de son vecteur
vitesse ~v, il faut préciser ce qu’on entend par symétrie de −→Fm.

• On dira qu’un plan est plan de symétrie de la force magné-
tique −→Fm si et seulement si :

•

•
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• On dira qu’un plan est plan d’anti-symétrie de la force ma-
gnétique −→Fm si et seulement si :

•

•

• On dira que la force magnétique −→Fm est invariante par trans-
lation le long de l’axe Ox si et seulement si :

•O x

∆

Il faut alors faire attention au fait que le produit vectoriel dans
l’expression de −→Fm entraîne qu’un plan de symétrie de −→Fm est un
plan d’anti-symétrie de −→B tandis qu’un plan d’anti-symétrie de−→
Fm est un plan de symétrie de −→B .

On peut le voir sur les exemples particuliers ci-dessous :

•

•

•

•

•

•

•

•
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On en déduit :

Symétries de −→B

Soit une distribution de charges et de courants stationnaire (ρ,~j).
Alors :

1. Tout plan de symétrie (resp. plan d’antisymétrie) de ~j (cause)
est un plan de symétrie (resp. plan d’antisymétrie) de la force
magnétique −→Fm exercée sur une charge ponctuelle test qT (effet
produit) et donc un plan d’anti-symétrie (resp. de symétrie) du
champ magnétique stationnaire −→B (M) créé.

2. Si ~j est invariant par translation (le long de Oz par exemple),
alors −→Fm et −→B (M) sont invariants par translation.

3. Si ~j est invariant par rotation autour d’un axe ∆ = Oz alors −→Fm

et −→B (M) est aussi invariant par rotation autour de ∆.

On retiendra surtout du 1. que :

• Tout plan de symétrie de ~j est un plan d’anti-symétrie de−→
B .

• Tout plan d’anti-symétrie de ~j est un plan de symétrie de−→
B .

7) Modélisation des courants dans un fil

Un cas que l’on rencontre souvent est celui où les courants élec-
triques sont concentrés dans des fils métalliques. Ces fils canalisent
les lignes de courant. Il est alors commode d’adopter la modélisation
suivante :

.
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III. Exemples classiques de calcul de champs
magnétiques

On peut facilement calculer −→B dans les cas où les symétries sont
élevées. Il y a trois exemples à connaître parfaitement. On le fait sur
feuille à part.

1) Champ magnétique créé par un cylindre rectiligne
infini

2) Champ magnétique créé par un solénoïde infini

3) Champ magnétique créé par une plaque de courant
infinie

4) Relation de passage

IV. Forces magnétiques exercées sur les cou-
rants

1) Densité volumique de force électromagnétique

Considérons une région de l’espace dans laquelle il existe un champ
électrique −→E et un champ magnétique −→B pas nécessairement station-
naires.

Soit d’autre part un élément de volume mésoscopique dτM loca-
lisé au point M . On suppose que cet élément contient un très grand
nombre d’entités microscopiques chargées (électrons, ions, ...) que l’on
regroupe par espèces Bk, 1 6 k 6 K.

Évaluons la résultante des forces électromagnétiques exercées sur
l’ensemble des porteurs de charges contenus dans dτM .

.
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2) Force de Laplace

C’est un cas particulier du cas général précédent où la force s’exerce
sur un élément de volume d’un fil métallique par parcouru par un
courant électrique d’intensité i.

Le métal est caractérisé par une densité volumique de charge nulle
ρ(M, t) = 0 en tout point du métal et à chaque instant : il y a autant
de cations positifs que d’électrons de conduction. Il s’ensuit que :

3) Couple magnétique exercé sur une spire de courant

a) Analyse d’une expérience

Dans l’expérience décrite ci-dessous, une spire circulaire de rayon
a est formée de N tours de fil de cuivre. Un générateur impose un
courant constant dans le fil avec une intensité I.
La spire est maintenue par un petit câble chargé d’une part de

véhiculer le courant électrique jusqu’à la spire et qui, d’autre part,
ne lui permet que de faire des mouvements de rotation autour de
l’axe du câble, noté ∆. Elle est plongée dans un champ magnétique
stationnaire et uniforme −→Be créé par deux bobines de Helmoltz.

∆

•
A

•
C

•G

a

• x

y

G

−→
S

∆ = Gz

θ
−→
Be

10



MP1 Janson de Sailly Champs magnétiques stationnaires

Y

X

∆ = Gz

−→
Be−→

S
θ

•G

.
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b) Généralisation

Soit une spire de courant formée de N tours de fil parcouru par un
courant d’intensité i pas forcément constante.

Définition. Moment magnétique d’une spire de courant
On appelle moment magnétique de la spire la grandeur :

−→m = N i
−→
S

Actions d’un champ magnétique sur une spire
Lorsqu’une spire de courant est plongée dans un champ magnétique
uniforme −→Be (mais pas forcément stationnaire) créé par d’autres
sources que la spire, celui-ci exerce sur elle des forces de Laplace qui
forment un couple, à savoir, dont la résultante est nulle et dont
le moment résultant, indépendant du point par rapport auquel on le
calcule, est donné par :

−→ΓL = −→m ∧ −→Be

où −→m est le moment magnétique de la spire.

4) Effet Hall

Le principe de l’effet Hall est donné ci-dessous. Un métal est taillé
en forme de parallélépipède rectangle et il est parcouru par un courant
électrique d’intensité constante I qui traverse sa section a× b.

Un champ magnétique stationnaire −→Be = Be
−→ez qu’on peut suppo-

ser uniforme à l’échel du volume du parallélépipède est appliqué (ce
champ magnétique est créé par d’autres sources que les courants dans
le parallélépipède).

• y
O

z

x

−→
j

−→
Be

a

b

•

•

V

Modèle :
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−→ey

−→ex

•−→ez

• −→Be

−→ey

−→ex

•−→ez

• −→Be

.
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.
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