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Les bouées houlographes Waverider. Centrale MP 2022

1 La plateforme stabilisatrice

A - Flottabilité

Q1. Faisons un schéma de la situation.

Au moment où le solide est fixe, les frottements sont absents, ainsi les deux seules forces
sont la poussée d’Archimède et le poids :

−→
P = m~g = ρV ~g
−→Π = −ρ`V ~g

La résultante de ces deux forces est :
−→
P +−→Π = (ρ− ρ`)V ~g

Cette force est dirigée vers le bas si ρ > ρ`, vers le haut dans le cas inverse. Dans le
premier cas, le solide coule, dans le second il remonte à la surface.

B - Horizontalité statique de la plateforme

Q2. Nous prenons en compte le poids et la poussée d’Archimède s’exerçant sur chacun des
trois éléments (cf. Figure 1) :

−→
R = −→Π0 +−→P0 +−→Π1 +−→P1 +−→Π2 +−→P2

soit : −→
R = −ρ`V0 ~g + ρ0V0 ~g − ρ`V1 ~g + ρ1V1 ~g − ρ`V2 ~g + ρ2V2 ~g

Comme on considère ρ` = ρ0 :
−→
R = (ρ1 − ρ`)V1 ~g + (ρ2 − ρ`)V2 ~g

On exprime maintenant le moment de ces six forces par rapport au point C, ces forces
agissant dans chaque cas au centre d’inertie des éléments considérés :

−→ΓC = −ρ`V0
−−→CG0 ∧ ~g + ρ0V0

−−→CG0 ∧ ~g − ρ`V1
−−→CG1 ∧ ~g + ρ1V1

−−→CG1 ∧ ~g

− ρ`V2
−−→CG2 ∧ ~g + ρ2V2

−−→CG2 ∧ ~g

De nouveau, en considérant ρ` = ρ0, on obtient :
−→ΓC = (ρ1 − ρ`)V1

−−→CG1 ∧ ~g + (ρ2 − ρ`)V2
−−→CG2 ∧ ~g
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Figure 1 –

Q3. Le système S1 a une masse volumique ρ1 inférieure à celle du liquide, il donne donc une
propension au système tout entier à flotter. Inversement pour le système S2 qui donne
une propension au système tout entier à couler. Ces effets se compensent si la résultante
des forces agissant sur le système est nulle. Soit :

(ρ1 − ρ`)V1 = (ρ` − ρ2)V2

Q4. Notons −→TC la tension exercée par le fil en C : son moment en C est nul puisque C est
le point d’application de cette force. Le moment en C, −−→MC,ext, des forces s’exerçant sur
l’ensemble Σ se réduit donc à celui des forces de pression et de pesanteur, déjà calculé à
la question Q2. Compte-tenu de la question Q3. On obtient :

−−→
MC,ext = −→ΓC = (ρ1 − ρ`)V1

−−→
CG1 ∧ ~g + (ρ2 − ρ`)V2

−−→
CG2 ∧ ~g

= (ρ` − ρ2)V2
−−→
CG1 ∧ ~g + (ρ2 − ρ`)V2

−−→
CG2 ∧ ~g

= (ρ2 − ρ`)V2
Ä−−→
CG2 −

−−→
CG1

ä
∧ ~g

= (ρ2 − ρ`)V2
−−−→
G1G2 ∧ ~g

On identifie donc
Mm = (ρ2 − ρ`)V2 > 0

puisque ρ2 > ρ` = ρ0.
Q5. À l’équilibre mécanique, le théorème du moment cinétique indique que le moment en C

des forces extérieures est nul. Ainsi −−−→G1G2 et ~g sont colinéaires.

Pour étudier la stabilité de l’équilibre, sans utiliser l’énergie potentielle, on peut regarder
l’influence d’un petit décalage d’un angle θ très petit et regarder l’équation différentielle
vérifiée par θ. En notant J le moment d’inertie du solide (Σ) par rapport à l’axe Cy et
L = G1G2 (constant), on obtient :
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Figure 2 –

1er cas : −−−→G1G2 vers le bas.
−−−→
G1G2 = −L (sin θ−→ux + cos θ−→uz). On a donc :

−−→
MC,ext = MmgL (sin θ−→ux + cos θ−→uz) ∧ −→uz = −MmgL sin θ−→uy

Le théorème scalaire du moment cinétique conduit à :

Jθ̈ = −−→MC,ext.
−→uy =⇒ Jθ̈ +MmgL sin θ = 0

Dans la limite des petits angles on obtient :

θ̈ + MmgL

J
θ = 0

ce qui est l’équation d’un oscillateur harmonique. Les solutions sont donc sinusoïdales et
le solide oscille sans fin (en l’absence de frottements) autour de sa position d’équilibre.
Celle-ce est donc stable.

2ème cas : −−−→G1G2 vers le haut.
−−−→
G1G2 = L (sin θ−→ux + cos θ−→uz). On a donc :

−−→
MC,ext = MmgL sin θ−→uy

et le théorème scalaire du moment cinétique conduit à :

Jθ̈ −MmgL sin θ = 0

Dans la limite des petits angles on obtient :

θ̈ − MmgL

J
θ = 0

Dans ce cas les solutions sont exponentielles et le solide va s’éloigner de sa position
d’équilibre sans y revenir. Cette position d’équilibre est donc instable.

En conclusion, l’équilibre est stable si −−−→G1G2 est orienté vers le bas.

Q6. La vis V a pour but de déplacer le centre d’inertie des parties lourdes G2 pour assurer
ainsi l’horizontalité de la plateforme.
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C - Oscillations du pendule et longueur effective

•
O

•Σ0

`
−→er

−→eθ
θ

~g

−→uz
−→ux

−→uy

Q7. On applique le théorème du moment cinétique en O (point fixe de RT ) à Σ0. On peut
utiliser la base polaire (−→er ,−→eθ ) comme base de travail et remarquer que −−→uz = cos(θ)−→er−
sin(θ)−→eθ .
Sur la plateforme s’exercent la poussée d’Archimède, le poids et la tension du fil. Les

moments en O de ces forces sont :
−−→
MO

Ä−→Πä = −−→OM ∧ ρ`V0g
−→uz = ρ`V0g` sin θ−→uy

−−→
MO

Ä−→
P
ä

= −−→OM ∧ ρ0V0g (−−→uz) = −ρ0V0g` sin θ−→uy
−−→
MO

Ä−→
T
ä

= −−→OM ∧ −→T = ~0

D’après l’énoncé, le moment cinétique en O s’écrit −→LO = −−→OM∧meff~v = meff`
−→er ∧`θ̇−→eθ =

meff `
2θ̇−→uy. En projection sur −→uy cela donne :

meff` θ̈ = ρ`V0g sin θ − ρ0V0g sin θ

d’où :
θ̈ + (ρ0 − ρ`)V0g

meff`
sin θ = 0

Dans l’approximation des petits angles sin θ ≈ θ ainsi :

θ̈ + (ρ0 − ρ`)V0g

meff`
θ = 0

C’est l’équation de l’oscillateur harmonique. On identifie :

ω0 =
 

(ρ0 − ρ`)V0g

meff`
=
…

g

`eff

et donc :
`eff = `

meff
(ρ0 − ρ`)V0

= `
meff
mapp

Q8. Par hypothèse meff = ρ0V0 + 20 ρ`V0 et ρ` = 0,99 ρ0. Ainsi meff = ρ0V0 + 19,8 ρ0V0 =
20,8 ρ0V0 et donc `eff = ` 20,8ρ0V0

0,01 ρ0V0
= 2080`.

On en déduit que :

ω0 = 1√
2080

…
g

`
d’où T0 = 2π

√
2080

 
`

g

soit :
T0 =

√
2080T0,vide ≈ 45,6× T0,vide
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Q9. Un pendule de 400 mètres dans le vide oscille à :

T0 = 2π
 
`

g
= 40 s

Ce qui est conforme à la brochure commerciale. Enfin :

` = `eff
2080 = 19,2 cm

D - Effet stabilisateur
Q10. Nous devons prendre en compte la force d’inertie d’entraînement :

−→
fie = −m−→ae = −ρ0V0 a(t)−→ux

Remarque :

Il n’y a pas de force d’inertie de Coriolis puisque RS est en tanslation par rapport à RT
supposé galiléen.

Cette force d’inertie d’entraînement permet aussi de définir le poids effectif −→P eff qui
intervient dans l’expression de la poussée d’Archimède.

Q11. On prend en compte la force d’inertie d’entraînement. On étudie le mouvement de Σ0
dans le référentiel non-galiléen RS . Par ailleurs, nous utilisons le principe fondamental
de la dynamique (noté PFD par la suite) projeté dans la base polaire (−→er ,−→eθ ). Faisons un
bilan des forces :

• la poussée d’Archimède :
−→Π = −ρ`V0 (~g −−→ae)

= ρ`V0 (g−→uz + a(t)−→ux)

avec −→ux = − sin θ−→er − cos θ−→eθ et −→uz = − cos θ−→er + sin θ−→eθ :
−→Π = ρ`V0 { (−a(t) sin θ − g cos θ)−→er + (−a(t) cos θ + g sin θ)−→eθ }

• le poids :
−→
P = m~g = − ρ0V0g

−→uz
= ρ0V0g (cos θ−→er − sin θ−→eθ )

• la force d’inertie d’entraînement :
−→
fie = −ρ0V0a(t)−→ux = ρ0V0a(t) (sin θ−→er + cos θ−→eθ )

• La force de frottement visqueux :
−→
Fv = −β~v = −β`θ̇−→eθ

• La tension du fil : −→
T = −T −→er
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Le mouvement étant circulaire, le PFD s’écrit :

−meff `θ̇
2−→er +meff `θ̈

−→eθ =
∑

~F

Projeté sur −→eθ , on obtient :

meff` θ̈ = −ρ`V0a(t) cos θ + ρ`V0g sin θ − ρ0V0g sin θ + ρ0V0a(t) cos θ − β`θ̇

Dans l’approximation des petits angles, en se limitant au premier ordre cos θ ≈ 1 et
sin θ ≈ θ il vient :

meff` θ̈ + β` θ̇ + (ρ0 − ρ`)V0g θ = (ρ0 − ρ`)V0 a(t)

d’où :
θ̈ + β

meff
θ̇ + (ρ0 − ρ`)V0g

meff`
θ = (ρ0 − ρ`)V0

meff`
a(t)

On retrouve `eff = ` meff
(ρ0−ρ`)V0

:

θ̈ + β

meff
θ̇ + g

`eff
θ = a(t)

`eff

Avec ω0 =
»
g/`eff et Q = meff ω0/β :

θ̈ + ω0
Q
θ̇ + ω2

0 θ = a(t)
`eff

Q12. L’excitation étant sinusoïdale, on recherche une solution particulière sinusoïdale à la même
pulsation ω. Pour ce faire, nous introduisons les signaux complexes a(t) et θ(t). Il vient :

−ω2θm e
jωt + jωω0

Q
θm e

jωt + ω2
0θm e

jωt = a0 e
jωt

`eff

d’où :

θm = a0/`eff
ω2

0 − ω2 + jω ω0
Q

Q13. Pour ω = 0 :
θ0 = a0

`effω2
0

On écrit :

θm =
a0

`eff ω2
0

1− ω2

ω2
0

+ j ω
ω0Q

= θ0

1− ω2

ω2
0

+ j ω
ω0Q

Ainsi :
H = 1

1− ω2

ω2
0

+ j ω
ω0Q

C’est la fonction de transfert d’un filtre passe-bas du second ordre.

Q14. Si le pendule oscillait dans l’air :

• β = 0 (pas de frottement visqueux) si bien que ω
ω0Q

= 0 ;
• `eff = ` car meff = ρ0V0 et (ρ0 − ρ`)V0g = ρ0V0g.
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Ainsi ω2
0 = g/` d’où :

H1 = 1
1− ω2

(g/`)

Q15. Sans liquide, On lit sur le graphique une pulsation propre d’environ 1,2 Hz. On observe à
cette fréquence une résonance très forte (un gain de 40 dB indiquant une multiplication
par 100 par rapport à la valeur à très basse fréquence θ0) : c’est logique car nous voyons
que |H1| → +∞ quand ω → g/`.

En présence du liquide, la fréquence de coupure est d’environ 0,025 Hz (soit une division
de la fréquence de coupure d’un facteur 50, conforme à la réponse Q8). À la coupure,
G = − 20 dB indiquant :

|H| =
∣∣∣∣ω0Q

ω0

∣∣∣∣ = Q = 1
10

et donc l’importance de l’amortissement visqueux. Aux fréquences usuelles de la houle,
le gain est au moins inférieur à − 20 dB atténuant donc les oscillations par rapport à la
valeur très basse fréquence θ0. Cela montre l’utilité de la plateforme stabilisatrice.

Si a0 = 1 m.s−2 à très basse fréquence, l’inclinaison θ0 est :

θ0 = a0
`effω2

0
= a0

g
= 0,1 rad

Pour les fréquences considérées, le gain max est − 20 dB soit un angle θ0/10 : l’amplitude
maximale est 0,01 rad = 0,6°.

2 Traitement du signal
Q16. Il faut un filtre passe-bas qui se charge d’éliminer les signaux de fréquence supérieure à 1

Hz. Or, à basse fréquence, un condensateur se comporte comme un interrupteur ouvert
et à haute fréquence, il se comporte comme un fil. On voit donc déjà que le filtre B ne
peut pas convenir

Considérons le filtre A :

Basses fréquences : le courant est nul dans les deux branches ouvertes, le courant iR est
donc également nul d’après la loi des nœuds. Ainsi Us = RiR = 0.

Hautes fréquences : la tension aux bornes d’un fil est nul ainsi Us = 0.
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Le filtre A présente un comportement de filtre passe-bande qui ne convient pas puisqu’il
élimine aussi le signal utile.

Considérons le filtre C :

Basses fréquences : le courant est nul dans les deux branches contenant le condensateurs.
Le courant dans les deux résistances l’est donc également d’après la loi de nœuds. D’après
la loi des mailles, Us + 0 + 0 = U . Ainsi Us = U .

Hautes fréquences : la tension aux bornes d’un fil est nul ainsi Us = 0.

Le filtre C présente un comportement passe-bas. C’est le filtre C qui est adapté.
Q17. On refait le circuit en remplaçant les tensions par leurs amplitudes complexes et les

composants par leurs impédances :

Commençons par déterminer la relation entre U1 et US :

US = 1/(jCω)
1/(jCω) +R

U1 = 1
1 + jRCω U1

Il faut ensuite trouver la relation entre U1 et U . Comme C et R ne sont pas parcourues
par le même courant, on ne peut pas appliquer directement un pont diviseur de tension.
On peut soit appliquer la loi des nœuds à l’aide des potentiels, soit associer les impédances
pour se ramener à un circuit plus simple. Prenons la seconde méthode :

Zeq et R sont parcourus par le même courant, on peut donc appliquer le pont diviseur
de tension :

U1 =
Zeq

Zeq +R
U = 1

1 + R
Zeq

U

avec :
1
Zeq

= jCω + 1
R+ 1/(jCω)
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Ainsi :
U1 = 1

1 +R
Ä
jCω + 1

R+1/(jCω)

äU
= 1

1 + jRCω + jRCω
1+jRCω

U

= 1 + jRCω
1 + 2jRCω + (jRCω)2 + jRCωU

US = 1
1 + jRCωU1 = 1

1 + 3jRCω + (jRCω)2U

On trouve bien :
HF (jω) = 1

1 + 3jRCω + (jRCω)2

Q18. Posons ω0 = 1/(RC) Pour éliminer les fréquences au-dessus de 1 Hz , on peut choisir
f0 = ω0

2π = 0,1 Hz soit 1/(RC) = 2π × 10−1 rad.s−1, en choisissant par exemple C = 1,0
µ F, on doit choisir R = 1,6 MΩ.

Q19. L’écriture :
US = 1

1 + 3jRCω + (jRCω)2 U

devient dans le domaine temporel, avec τ = RC :

u(t) = uS(t) + 3τ duS
dt + τ2 d2uS

dt2

Traduisons cette équation différentielle dans le domaine numérique en remplaçant les
dérivées par des taux d’accroissement, le pas de temps étant Te = 1/Fe (période d’échan-
tillonnage)

duS
dt =

US(k+1) − USk
Te

et d2uS
dt2 =

US(k+1) + US(k−1) − 2USk
T 2
e

Ainsi :
Uk = USk + 3τ

Te

(
US(k+1) − USk

)
+ τ2

T 2
e

(
US(k+1) + US(k−1) − 2USk

)
On isole Us(k+1) de façon à mettre en évidence une relation de récurrence :

US(k+1)

Å
τ2

T 2
e

+ 3τ
Te

ã
= Uk + USk

Å3τ
Te

+ 2τ2

T 2
e

− 1
ã

+ US(k−1)

Å
− τ

2

T 2
e

ã
On note α = τ/Te = τfe, avec τ = 10

2π et fe = 10,24 Hz :

US(k+1) = 1
α2 + 3α × Uk + 2α2 + 3α+ 1

α2 + 3α × USk + −α2

α2 + 3αUS(k−1)

= 0,00355 Uk + 2,054 USk − 0,942 US(k−1)

Nous pouvons calculer successivement les USk à l’aide de cette relation de récurrence,
en initialisant US0 = U0 et US1 = U1.

Q20. Le spectre doit être affiché sur l’intervalle [0 ; 1,28 Hz] pour respecter le critère de Shannon.
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