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Les bouées houlographes Waverider. Centrale MP 2022

1 La plateforme stabilisatrice

A - Flottabilité

Q1. Faisons un schéma de la situation.

mu i}

>

P

Au moment ou le solide est fixe, les frottements sont absents, ainsi les deux seules forces
sont la poussée d’Archimede et le poids :

P =mg=pV§
= —peVg

La résultante de ces deux forces est :

P+T=(p—p)V§

Cette force est dirigée vers le bas si p > pg, vers le haut dans le cas inverse. Dans le
premier cas, le solide coule, dans le second il remonte a la surface.

B - Horizontalité statique de la plateforme

Q2. Nous prenons en compte le poids et la poussée d’Archimede s’exercant sur chacun des
trois éléments (cf. Figure 1) :

e (et
ﬁ:H0+P0+H1+P1+H2—|—P2

soit :
R = —oeVo g+ poVoG—piVig+piVig— piVag+ p2Vag

Comme on considere py = po :

ﬁZ(m—pz)V@Jr(m—pe)Vzﬁ

On exprime maintenant le moment de ces six forces par rapport au point C, ces forces
agissant dans chaque cas au centre d’inertie des éléments considérés :

— — — — —
Lo =—piVoCGo A G+ poVoCGo A g — peV1 CG1 NG+ p1V1CGrLAg

s —
— peVaCGa A G+ paVo CGa A g

De nouveau, en considérant py = pg, on obtient :

— — —
Lo =(p1—p) ViCGL A G+ (p2 — pe) VaCGa A g
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Q4.

Q5.
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FIGURE 1 —

Le systéme S7 a une masse volumique p; inférieure a celle du liquide, il donne donc une
propension au systeme tout entier a flotter. Inversement pour le systeme So qui donne
une propension au systeme tout entier a couler. Ces effets se compensent si la résultante
des forces agissant sur le systeme est nulle. Soit :

‘(Pl—pz)W:(m—Pz)VQ‘

Notons JTC> la tension exercée par le fil en C : son moment en C' est nul puisque C' est
le point d’application de cette force. Le moment en C, M¢ o, des forces s’exercant sur
I’ensemble ¥ se réduit donc a celui des forces de pression et de pesanteur, déja calculé a
la question Q2. Compte-tenu de la question Q3. On obtient :

— — — .
Mcext =Tc = (p1 —pr) ViCG1 A G+ (p2 — pe) VaCGa A G
— —

= (pr—p2) VaCGL NG+ (p2 — pe) VaCGa N G

( )
( )

= (p2 — pe) Vo (@—C—Cﬁ)/\ﬁ
( )

On identifie donc

‘MmZ(Pz—Pz)Vz>0‘

puisque p2 > pg = po.
A D’équilibre mécanique, le théoréme du moment cinétique indique que le moment en C'
des forces extérieures est nul. Ainsi G1G2 et § sont colinéaires.

Pour étudier la stabilité de 1’équilibre, sans utiliser I’énergie potentielle, on peut regarder
I'influence d’un petit décalage d’un angle 8 tres petit et regarder I’équation différentielle
vérifiée par 6. En notant J le moment d’inertie du solide (X) par rapport a 'axe Cy et
L = G1G> (constant), on obtient :
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Q6.
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Uz ! // Uz ! //
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FIGURE 2 —
s
1°T cas : G1 (G vers le bas.
s
GGy = —L(sin@u—aj> —l—cos@u—;). On a donc :
i e 3\ A g
Mc¢ ext = MpymgL (sinfug + cosfuz) Aul = — MyugLsinfuy,

Le théoréme scalaire du moment cinétique conduit & :
JO = M¢ ety = JO+ MygLsind =0

Dans la limite des petits angles on obtient :

i MmgL
0 0=0
T

ce qui est ’équation d’un oscillateur harmonique. Les solutions sont donc sinusoidales et
le solide oscille sans fin (en I'absence de frottements) autour de sa position d’équilibre.
Celle-ce est donc stable.

. s
2¢M¢ cas : G1Go vers le haut.

G1Gy = L(sin@@ —|—cos€ui). On a donc :

—

Mc¢ ext = MygLsin @ u_y>

et le théoreme scalaire du moment cinétique conduit & :
JO — MygLsind =0

Dans la limite des petits angles on obtient :

i My,gL

0=0

Dans ce cas les solutions sont exponentielles et le solide va s’éloigner de sa position
d’équilibre sans y revenir. Cette position d’équilibre est donc instable.

>
En conclusion, ’équilibre est stable si G1Go est orienté vers le bas.

La vis V a pour but de déplacer le centre d’inertie des parties lourdes G pour assurer
ainsi I’horizontalité de la plateforme.
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C - Oscillations du pendule et longueur effective

Q7.

Qs.

ul
g —
Uy
_>
Uy

On applique le théoréeme du moment cinétique en O (point fixe de Ry) a ¥g. On peut
utiliser la base polaire (&5, ¢5) comme base de travail et remarquer que — u; = cos(6) &, —

sin(f) eg.
Sur la plateforme s’exercent la poussée d’Archimeéde, le poids et la tension du fil. Les
moments en O de ces forces sont :
Mg (ﬁ) = OM A peVog il = peVgl sin 0z
]\75 (?) = O—J\>4 A poVog (— Ui) = —poVog¥ sinﬁuj
W (T) = O AT —0

D’apres I’énoncé, le moment cinétique en O s’écrit Lo = OM Ameg? = megl eL N0 e =

Meff 5291773. En projection sur u_>y cela donne :
Megl 0 = peVogsin @ — poVpg sin 6
d’ou :
(po — pe) Vog
Meff

0 + sinf =0
Dans 'approximation des petits angles sin 6 ~ § ainsi :

(o —=pe) Vog , _

i
+ Mol

C’est ’équation de l'oscillateur harmonique. On identifie :

(po —pe) Vog _
Mel

et donc :

o = 0 —2eft ¢

(PO - p@) Vo B Mapp

Par hypothese meg = poVo + 20 peVo et pp = 0,99 po. Ainsi meg = poVo + 19,8 poVo =

20,8 poVp et donc Lo = LZoP20 — 2080¢.

On en déduit que :

1 \/5 l
wy = = dou Tp=2wvV20804/—
*= Vaoso V¢ 0= \/;

Ty = V2080 Th yige = 45.6 x To vide

soit :

4
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Qo.

Q1o0.

Q11.

Un pendule de 400 metres dans le vide oscille a :

{
T():27T\/7:4OS
g

Ce qui est conforme a la brochure commerciale. Enfin :

/= Eeﬂ“
2080

=19,2 cm

Effet stabilisateur

Nous devons prendre en compte la force d’inertie d’entrainement :
%
fie = —ma; = —poVya(t)ug

Remarque :

Il n’y a pas de force d’inertie de Coriolis puisque Rg est en tanslation par rapport & Rp

supposé galiléen.

Cette force d’inertie d’entrainement permet aussi de définir le poids effectif ?eff qui

intervient dans I’expression de la poussée d’Archimede.

On prend en compte la force d’inertie d’entrainement. On étudie le mouvement de X
dans le référentiel non-galiléen Rg. Par ailleurs, nous utilisons le principe fondamental
de la dynamique (noté PFD par la suite) projeté dans la base polaire (e—,z, e_g). Faisons un

bilan des forces :

e la poussée d’Archimede :

I = —peVo (G — @)
= pVo (g + a(t) @)

avec U, = —sinf e, —cos0ej et u, = —cosf e, +sindep :
T = peVo { (—a(t) sin 0 — gcos0) & + (—a(t) cosd + gsin 0)e }
e le poids :

P =mg = — poVogu
= poVog (cos@e? — sin@e_g)

e la force d’inertie d’entrainement :
%
fie = —poVoa(t) g = poVoa(t) (sin@ e + cosfeg)

e La force de frottement visqueux :

e La tension du fil :

Corrigé du DM n°9
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Le mouvement étant circulaire, le PFD s’écrit :
—meg (02 & +meg e =D F
Projeté sur €, on obtient :
Mol 6 = —peVoa(t) cos @ + pVog sin @ — poVpg sin 0 + poVpa(t) cos 6 — 500

Dans 'approximation des petits angles, en se limitant au premier ordre cosf ~ 1 et
sin @ = 6 il vient :

mel 0 + BLO + (po — pe) Vog 0 = (po — pe) Vo a(t)

d’ou : - -
iy B 0+ (po —pe) Vog 5 _ (po = pe) 0 a(t)
Meft Meg! Megtl
On retrouve Leg = £ @ﬁ% :
oy g 9 g ol
Treff Lo Lo

Avec |wg = \/g/ﬁeﬁs et ‘Q = meﬁ?WO/IB‘:

a(t)

geff

wo

Q

Q12. L’excitation étant sinusoidale, on recherche une solution particuliere sinusoidale & la méme
pulsation w. Pour ce faire, nous introduisons les signaux complexes a(t) et (t). Il vient :

6+

0+wih=

. w . . a ej“Jt
—WZQm @t 4 jwaQm elwt 4 Wng plwt — 20°
Q geff
d’ou :
_ ao/lest
W —w? —i—jw%
Q13. Pour w=0:
ag
00 — 672
effWg
On écrit :
ag
0 _ ZeH wg _ 00
T e e Wy w
w2 ‘]on w? onQ
Ainsi :
1

H=

S
1—%8+Jﬁ

C’est la fonction de transfert d’un filtre passe-bas du second ordre.

Q14. Si le pendule oscillait dans 'air :

o [ =0 (pas de frottement visqueux) si bien que ﬁ =0;

o log =L car meg = poVo et (po — pe) Vog = poVog.
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Ainsi wg = g/¢ d’ou :

1
ﬂlzl_ibﬁ

(9/9)

Q15. Sans liquide, On lit sur le graphique une pulsation propre d’environ 1,2 Hz. On observe a
cette fréquence une résonance tres forte (un gain de 40 dB indiquant une multiplication
par 100 par rapport & la valeur & tres basse fréquence ) : c’est logique car nous voyons
que |H;| — +o0 quand w — g/¢.

En présence du liquide, la fréquence de coupure est d’environ 0,025 Hz (soit une division
de la fréquence de coupure d’un facteur 50, conforme a la réponse Q8). A la coupure,

G = — 20 dB indiquant :

wo®@ 1
H = | —| = —_
‘ ‘ wo ’ Q 10

et donc I'importance de 'amortissement visqueux. Aux fréquences usuelles de la houle,
le gain est au moins inférieur & — 20 dB atténuant donc les oscillations par rapport a la
valeur treés basse fréquence 0y. Cela montre 1'utilité de la plateforme stabilisatrice.

Si ag = 1 m.s~2 & treés basse fréquence, I'inclinaison 6y est :

ao

0o = — 2 _ 01 rad
g

Keffwg

Pour les fréquences considérées, le gain max est — 20 dB soit un angle 6,/10 : 'amplitude
maximale est 0,01 rad = 0,6°.

2 Traitement du signal

Q16. Il faut un filtre passe-bas qui se charge d’éliminer les signaux de fréquence supérieure a 1
Hz. Or, a basse fréquence, un condensateur se comporte comme un interrupteur ouvert
et a haute fréquence, il se comporte comme un fil. On voit donc déja que le filtre B ne
peut pas convenir

Considérons le filtre A :

Basses fréquences : le courant est nul dans les deux branches ouvertes, le courant ig est
donc également nul d’apres la loi des noeuds. Ainsi Us = Rig = 0.

Hautes fréquences : la tension aux bornes d’un fil est nul ainsi Uy = 0.

o el
A %R A
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Q17.

Le filtre A présente un comportement de filtre passe-bande qui ne convient pas puisqu’il
élimine aussi le signal utile.

Considérons le filtre C :

Basses fréquences : le courant est nul dans les deux branches contenant le condensateurs.
Le courant dans les deux résistances I’est donc également d’apres la loi de nceuds. D’apres
la loi des mailles, Us + 040 = U. Ainsi Us = U.

Hautes fréquences : la tension aux bornes d’un fil est nul ainsi Ugs = 0.

Le filtre C présente un comportement passe-bas. C’est le filtre C qui est adapté.

On refait le circuit en remplacant les tensions par leurs amplitudes complexes et les
composants par leurs impédances :

<
9~
€

Commencons par déterminer la relation entre U; et Ug :

_1/(iCw) 1y
T 1)(jCw)+ R 1+ jRCw

Il faut ensuite trouver la relation entre U; et U. Comme C' et R ne sont pas parcourues
par le méme courant, on ne peut pas appliquer directement un pont diviseur de tension.
On peut soit appliquer la loi des nceuds a ’aide des potentiels, soit associer les impédances
pour se ramener a un circuit plus simple. Prenons la seconde méthode :

1
I
L

—

]R+jc%d — U Z [

=
E»—A
(3
| —

Zeq €t R sont parcourus par le méme courant, on peut donc appliquer le pont diviseur

de tension : 7 )
U =—3 U= U
T ZegtRT 1A
Zeq
avec : ) )
R — 'Cw 4+
Zy T RE1/(0w)
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Q18.

Q19.

Q20.

Ainsi :
B 1

. 1

1
= i U
1+jRCw + pice-

1+ jRCw I

1+ 2jRCw + (JRCw)? + jRCw
1 1

Ug = U, = U
=5 T14jRCw ' 1+43jRCw+ (JRCw)2—

On trouve bien :

1
1+ 3jRCw + (jRCw)?

Hp(jw)

Posons wy = 1/(RC) Pour éliminer les fréquences au-dessus de 1 Hz , on peut choisir
fo =52 = 0,1 Hz soit 1/(RC) = 27 x 107! rad.s™!, en choisissant par exemple C' = 1,0

u F, on doit choisir R = 1,6 MSQ.

L’écriture :
1

Ug = U
=57 14 3jRCw + (JRCw)? —

devient dans le domaine temporel, avec 7 = RC' :

dug 9 dug
u(t) = ug(t) + 3TF + 7 2

Traduisons cette équation différentielle dans le domaine numérique en remplacant les
dérivées par des taux d’accroissement, le pas de temps étant T, = 1/F, (période d’échan-
tillonnage)

dus _ Us(rr1) — Usk . d?us  Usgrr1) + Us—1) — 2Usy

dt T, ¢ T T T2
Ainsi :
3T 72
Ui =Ugy, + ™ (Us(rt1) — Usk) + T2 (Us@is1) + Us(r—1) — 2Usk)

On isole Uy(x41) de fagon a mettre en évidence une relation de récurrence :

72 37 3r 272 T2
e (4 ) =4 (4 35 1) e ()

On note a = 7/T, = T f¢, avec T = % et fo = 10,24 Hz :

y 2a2—|—3a+1XU n —a?
a? + 3« o? + 3a Sk 02 ¥ 3a
= 0,00355 Uy + 2,054 Ugy, — 0,942 US(kfl)

Usks1) = k Us(k—1)

Nous pouvons calculer successivement les Ugy a 'aide de cette relation de récurrence,
en initialisant Ugg = Uy et Ugy = Uj.

Le spectre doit étre affiché sur 'intervalle [0 ; 1,28 Hz] pour respecter le critére de Shannon.



