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MOUVEMENTS DANS E ET B

1 Déflexion électrostatique

Soit un électron de charge — e et de masse m traversant 1’espace
entre les armatures A et B d’un condensateur plan. Cet électron pé-
nétre en O avec une vitesse initiale o4 = vg ug.
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Il existe une différence de potentiel Vg — V4 = U > 0 entre les
armatures métalliques de longueur L et distantes de d. On admet que

cela crée un champ électrostatique uniforme et égal a : E =——u

dans ’espace entre les armatures et nul ailleurs.

1. Déterminer I'équation y = f(x) de la trajectoire de 1’électron
entre les deux armatures (pour 0 < z < L). En déduire les coor-
données du point P en sortie des armatures.

2. Calculer tan(6) ou 0 est I’angle que forme la trajectoire avec I’axe
Ox au point P. Quelles sont les coordonnées du point d’impact
I sur I’écran fluorescent ?

2 Spectrographe de masse

1. Une particule de masse m et de charge ¢ > 0 est accélérée par
un champ électrique = E@ régnant entre les deux arma-
tures d’'un condensateur plan. Cette particule est initialement
introduite en O avec une vitesse nulle. La tension entre les deux
armatures du condensateur étant U > 0, déterminer sa vitesse
v4 lorsqu’elle arrive en A. On exprimera v4 en fonction de g, m
et de U.
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2. Cette particule pénetre en A dans une région ot regne un champ
magnétique — Bu. uniforme et permanent (E = 0 dans

cette région).

a) Montrer que la norme de la vitesse de la particule est conser-
vée.

b) Calculer le rayon R de la trajectoire et en déduire ’abscisse
7 du point d’impact sur une plaque réceptrice située dans
le plan y = 0 (voir figure).

¢) Quel est I'intérét de ce dispositif ? Application numérique :
B =0,10T; U = 10 kV, m = 1,67.107%7 kg (masse d'un
nucléon). Quelle est la distance séparant les deux isotopes
du potassium * Kt et 41 K+ sur la plaque ?
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CALCULS DE B

3 Symétries

Une spire circulaire de centre O et de rayon R est parcourue par
un courant constant d’intensité I.
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1. Montrer que si M € Oz alors ?(M) = B(z) €, z étant Iabscisse
de M sur Oz. Montrer que B(z) est une fonction impaire de z.

2. Montrer qu’en un point M de coordonnées cylindriques (r, 6, z),
?(M) = B,(r,z) e + B.(r,z) e;. Montrer que B,(r,z) est une
fonction impaire de z tandis que B,(r,z) est une fonction paire
de z.

4 Champ magnétique d’un cable coaxial

Un céable coaxial infini est constitué par un conducteur cylindrique
plein de rayon R;, entouré par un second conducteur cylindrique
d’épaisseur trés petite (on la supposera quasi-nulle) et de rayon
Ro > R;. Les deux cylindres sont coaxiaux. Un courant d’intensité I

circule dans le conducteur intérieur et revient dans ’autre sens par le
conducteur extérieur.

On supposera que le vecteur densité volumique de courant est uni-
forme dans le volume du cylindre intérieur de rayon R;.

Déterminer le champ magnétique produit par ce cable en tout point
de 'espace.

5 Champ magnétique créé par un tore

On considere un tore de section carrée, d’axe Oz, l'origine O étant
placée de telle fagon que le tore se trouve dans ’espace comprise entre
les cotes z = —a/2 et z = 4a/2. On bobine uniformément sur ce tore,
de fagon jointive, N spires de fil électrique traversé par un courant
d’intensité 1.

1) Déterminer la direction du champ magnétique en un point M
quelconque et sa dépendance vis a vis des coordonnées d’espace.
On notera (7,0, z) les coordonnées cylindriques de M.

2) Déterminer & laide du théoréeme d’Ampere, l'expression de
ﬁ(M) en tout point de 'espace.
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6 Champ magnétique créé par un solénoide
infini

On peut modéliser un solénoide par une nappe de courant cylin-
drique de rayon R et d’épaisseur e. En tout point M de coordonnées
cylindriques (7, 0, z), le vecteur densité volumique de courant s’écrit :
7 (M) = j(r)uj avec :

() = j constante sir € [R, R+ €]
JIT= 0 partout ailleurs

On suppose que le solénoide est de longueur infinie.

1) Déterminer le champ magnétique ?(M ) produit en tout point
de l'espace en résolvant I’équation de Maxwell-Ampeére. On ad-
mettra que = 0 pour r > R + e et on prendra ’expression
du rotationnel dans le formulaire.

2) Retrouver ce résultat en utilisant le théoreme d’Ampere.

3) On étudie maintenant le modele ot e — 0 et j — +o0o de sorte
que le produit j X e, qui sera noté jg, reste constant et fini.

a) Déduire des questions précédentes I’expression de ?(M ) en
tout point M pour ce modele en fonction de pg et jg. Est-ce
cohérent avec la relation de passage pour B 7

b) Comment relier ce résultat au champ magnétique créé par
un solénoide infini composé de n spires par metre, chacune
parcourue par un courant d’intensité I 7

7 Flux magnétique

1) g est un champ magnétique uniforme, colinéaire a uz. Calculer
le flux @ de ﬁ a travers le disque de centre O et de rayon a situé
dans le plan (Ozy) (figure 1).

Figure 1 Figure 2
o
~

2) Calculer le flux @ de § a travers la demi-sphere.
3) Pourquoi sont-ils égaux ?

4) Calculer le flux de B a travers le disque penché (figure 2).

8 Composante radiale de B

Un point M de I’espace est repéré par ses coordonnées cylindriques
(r,0, z). Une distribution de courant (une spire circulaire par exemple)
non décrite ici crée un champ magnétique en M de la forme :

§(M) = B,(r,2) el + B.(r,z) er

possédant une composante radiale B, et une composante aziale (le
long de Oz) B, qui ne dépendent que des cordonnées r et z de M.
On s’intéresse au calcul approché de B, pour des points tres voisins
de I'axe Oz, c’est a dire lorsque r est proche de zéro.

Dans les deux questions qui suivent, on pose : Baxe(2) = B,(r =
0, z), valeur de la composante axiale sur l’axe Oz.

1) En écrivant la conservation du flux de ﬁ a travers un cylindre
d’axe Oz, de rayon r trés petit et dont les bases inférieure et
supérieure sont situées aux cotes z et z4+dz, montrer que, lorsque

dz—0:
r dBaxe

2 dz

B,(r,z) = (2)
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2) On reprend ’étude a l'aide des équations locales de la magné-
tostatique. On prendra les expressions de la divergence et du
rotationnel en coordonnées cylindriques dans le formulaire.

On suppose B,.(r,z) et B,(r,z) de classe C* en r et en z, au
voisinage de = 0 on se contente d’un dévelopement limité a
Pordre 1 des deux composantes B, et B,, de la forme :

B,(r,z) = B.(0,z) +r 4B, (0,2) + o(r)

dr
et 4B
B.(r,2) = Baxe(2) + 7 d: (0,2) +o(r)
Pour simplifier les notations on pourra poser a(z) = dd]ff (0,2)

et B(2) = 4B=(0, 2).

a) Montrer que ’équation de Maxwell-Thomson implique que
1 dBaxe

2 dz

b) On suppose que le point M (r,6,z) est situé en dehors
de la distribution de courants. Montrer que 1’équation de
Maxwell-Ampeére impose que 5(z) = 0.

. Conclure.

B, (0,z) = 0 puis que «(z) =
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FORCES DE LAPLACE

9 Equilibre d’une spire dans un solénoide

Une spire plate (Cy), d’axe vertical, comprenant N tours de fil, de
surface S est fixée a l'extrémité du fléau d’une balance mobile autour
de ’axe horizontal passant par O. Cette spire est entiérement plongée
a 'intérieur d’un long solénoide (Cz) (que I’on pourra supposer infini)
comportant n spires par metre.

1

“} _________ C, ///\ o contrepoids 4

= A

A Dautre extrémité A du fléau est suspendu un plateau (OA =
L). Lorsqu’aucun courant ne circule, ni dans (C;p) ni dans (Cz), un
contrepoids permet de réaliser 1’équilibre mécanique de sorte que le
fléau soit horizontal. Lorsqu’on fait passer le méme courant I dans
(C1) et dans (Csq), on doit placer une masse m sur le plateau pour
rétablir ’équilibre.

Calculer I en fonction de m et des données.

10 Balance de Cotton

Une balance de Cotton balance est destinée a la mesure de champ
magnétique. Elle a été mise au point par Aimé Cotton en 1900. Elle
est constituée de deux fléaux. L’un, & gauche, comprend sur sa pé-
riphérie, un conducteur métallique qui sera parcouru par un courant
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et dont une partie sera placée dans le champ magnétique, uniforme
et permanent, a mesurer. Le conducteur sera soumis a des forces de
Laplace et la balance penchera du coté de ce fléau. L’autre comporte
un plateau sur lequel on peut déposer des masses pour équilibrer la
balance et déduire ainsi la norme du champ magnétique. Le schéma
de principe de la balance est représenté ci-dessous.
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Plateau 2

Sur le fléau dessiné a gauche, les conducteurs permettent le passage
d’un courant d’intensité i, selon le parcours A; — Ay — A3 — Ay —
As — Ag. Les portions de circuit As Az et A4 A5 sont des arcs de cercle
de méme centre O. L’ensemble des deux fléaux constitue un systeme
rigide, mobile sans frottement, autour d’un axe horizontal passant par
le point O et noté Oz. On désigne par C' le milieu du segment A3zAy
et D le point de suspension du plateau. On note d; la distance OC),
do la distance OD et £ la longueur du segment Az Ay.

La procédure de mesure est la suivante :

1)

2)

3)

. Equilibrage ”a vide” : en ’absence de courant ¢ et de masses

dans le plateau, le contrepoids C' est déplacé de fagon a ce que la
balance soit a I’équilibre, les trois points C, O et D étant alignés
sur ’horizontale.

Mesure du champ : on ferme le circuit électrique, ce qui permet
au courant d’intensité ¢ de circuler. Le fléau de gauche penche
vers le bas; on ajoute alors des masses dans le plateau jusqu’a ce
que la balance soit a I’équilibre, les trois points C, O et D étant
alignés sur I’horizontale.

Pour un courant ¢ # 0, montrer que le moment résultant en O
des forces de Laplace s’exercant sur les parties en arc de cercle
est nul.

A Déquilibre, en présence de courant et de champ magnétique,
établir 'expression du moment en O des forces de Laplace. En
déduire la relation liant B = H?H, la somme m des masses posées
sur le plateau, 7, £, d1, do et la norme g du champ de pesanteur.
La sensibilité de la balance étant de dm = 0,05 g, déterminer la
plus petite valeur de B mesurable pour i = 10 A, g = 10 m.s~2,

f=5cmetd =dy =10 cm.



