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***************

MOUVEMENTS DANS −→E ET −→B

1 Déflexion électrostatique

Soit un électron de charge − e et de masse m traversant l’espace
entre les armatures A et B d’un condensateur plan. Cet électron pé-
nètre en O avec une vitesse initiale −→v0 = v0

−→ux.
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Il existe une différence de potentiel VB − VA = U > 0 entre les
armatures métalliques de longueur L et distantes de d. On admet que
cela crée un champ électrostatique uniforme et égal à : −→E = − U

d
−→uy

dans l’espace entre les armatures et nul ailleurs.

1. Déterminer l’équation y = f(x) de la trajectoire de l’électron
entre les deux armatures (pour 0 6 x 6 L). En déduire les coor-
données du point P en sortie des armatures.

2. Calculer tan(θ) où θ est l’angle que forme la trajectoire avec l’axe
Ox au point P . Quelles sont les coordonnées du point d’impact
I sur l’écran fluorescent ?

2 Spectrographe de masse
1. Une particule de masse m et de charge q > 0 est accélérée par

un champ électrique −→E = E−→uy régnant entre les deux arma-
tures d’un condensateur plan. Cette particule est initialement
introduite en O avec une vitesse nulle. La tension entre les deux
armatures du condensateur étant U > 0, déterminer sa vitesse
vA lorsqu’elle arrive en A. On exprimera vA en fonction de q, m
et de U .
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2. Cette particule pénètre en A dans une région où règne un champ
magnétique −→B = B−→uz uniforme et permanent (−→E = −→0 dans
cette région).
a) Montrer que la norme de la vitesse de la particule est conser-

vée.
b) Calculer le rayon R de la trajectoire et en déduire l’abscisse

xI du point d’impact sur une plaque réceptrice située dans
le plan y = 0 (voir figure).

c) Quel est l’intérêt de ce dispositif ? Application numérique :
B = 0,10 T ; U = 10 kV, m = 1,67.10−27 kg (masse d’un
nucléon). Quelle est la distance séparant les deux isotopes
du potassium 39K+ et 41K+ sur la plaque ?
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***************

CALCULS DE −→B

3 Symétries
Une spire circulaire de centre O et de rayon R est parcourue par

un courant constant d’intensité I.
z
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1. Montrer que siM ∈ Oz alors −→B (M) = B(z)−→ez , z étant l’abscisse
de M sur Oz. Montrer que B(z) est une fonction impaire de z.

2. Montrer qu’en un point M de coordonnées cylindriques (r, θ, z),−→
B (M) = Br(r, z)−→er + Bz(r, z)−→ez . Montrer que Br(r, z) est une
fonction impaire de z tandis que Bz(r, z) est une fonction paire
de z.

4 Champ magnétique d’un câble coaxial
Un câble coaxial infini est constitué par un conducteur cylindrique

plein de rayon R1, entouré par un second conducteur cylindrique
d’épaisseur très petite (on la supposera quasi-nulle) et de rayon
R2 > R1. Les deux cylindres sont coaxiaux. Un courant d’intensité I

circule dans le conducteur intérieur et revient dans l’autre sens par le
conducteur extérieur.

z

−→
j

On supposera que le vecteur densité volumique de courant est uni-
forme dans le volume du cylindre intérieur de rayon R1.

Déterminer le champ magnétique produit par ce câble en tout point
de l’espace.

5 Champ magnétique créé par un tore

On considère un tore de section carrée, d’axe Oz, l’origine O étant
placée de telle façon que le tore se trouve dans l’espace comprise entre
les côtes z = −a/2 et z = +a/2. On bobine uniformément sur ce tore,
de façon jointive, N spires de fil électrique traversé par un courant
d’intensité I.

1) Déterminer la direction du champ magnétique en un point M
quelconque et sa dépendance vis à vis des coordonnées d’espace.
On notera (r, θ, z) les coordonnées cylindriques de M .

2) Déterminer à l’aide du théorème d’Ampère, l’expression de−→
B (M) en tout point de l’espace.
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6 Champ magnétique créé par un solénoïde
infini

On peut modéliser un solénoïde par une nappe de courant cylin-
drique de rayon R et d’épaisseur e. En tout point M de coordonnées
cylindriques (r, θ, z), le vecteur densité volumique de courant s’écrit :−→
j (M) = j(r)−→uθ avec :

j(r) =
{
j constante si r ∈ [R,R+ e]
0 partout ailleurs

On suppose que le solénoïde est de longueur infinie.

1) Déterminer le champ magnétique −→B (M) produit en tout point
de l’espace en résolvant l’équation de Maxwell-Ampère. On ad-
mettra que −→B = −→0 pour r > R + e et on prendra l’expression
du rotationnel dans le formulaire.

2) Retrouver ce résultat en utilisant le théorème d’Ampère.
3) On étudie maintenant le modèle où e → 0 et j → +∞ de sorte

que le produit j × e, qui sera noté jS , reste constant et fini.

a) Déduire des questions précédentes l’expression de −→B (M) en
tout pointM pour ce modèle en fonction de µ0 et jS . Est-ce
cohérent avec la relation de passage pour −→B ?

b) Comment relier ce résultat au champ magnétique créé par
un solénoïde infini composé de n spires par mètre, chacune
parcourue par un courant d’intensité I ?

7 Flux magnétique

1) −→B est un champ magnétique uniforme, colinéaire à −→uz. Calculer
le flux Φ de −→B à travers le disque de centre O et de rayon a situé
dans le plan (Oxy) (figure 1).

MP1 Lycée Janson de Sailly

TD n°11 : MAGNÉTOSTATIQUE

Exercice 1 Flux magnétique

Exercice 340 Ulm 10- Bolgar
Quelle est la charge électrique maximale que peut porter une goutte d’eau ?
Indication : Énergie de tension superficielle : Ets = AS avec S la surface de la goutte et A constant.
Remarque : utiliser l’énergie.

Exercice 341 X 10 - Nicolas
On considère un plan infini d’épaisseur a (un plasma) contenant des charges +e de masse M et des charges -e

de masse m. La densité de charges est n (pour les positives comme pour les négatives)

On place ce plan dans un champ �E qui lui est perpendiculaire. Décrire ce qui se produit (les plans chargés
positivement et négativement conserve leur intégrité).

Exercice 342 ENS 07- Giacinti
1) 4 charges –q sont situées aux sommets d’un carré de côté a, on se place au voisinage de l’origine O. En

étudiant les symétries, déterminer la forme du potentiel V. Calculer V dans le plan (Oxy) au voisinage de O.
L’équation de Poisson est-elle vérifiée ? (il m’a demandé plus tard la dépendance en z de V)

2) Deux charges +q sont maintenant situées à une distance a de O sur l’axe (Oz), calculer V dans le plan
(Oxy).

3) Une charge +q se trouve en M sur une diagonale du carré, calculer et dessiner la force s’exerçant sur elle. A
quoi cela vous fait penser ? Quel va être le mouvement de la charge ? Connaissez-vous des applications pratiques ?

Exercice 343 X 07- Giacinti
On charge un condensateur plan à un potentiel V, ses armatures sont carrées de côté l. On le plonge dans un

diélectrique de permittivité relative �r , de sorte que le liquide soit à une hauteur l/2 entre les armatures. On note

h la di�érence de niveau. Calculer la capacité C de ce condensateur, le champ �E , la charge surfacique � et h.

Exercice 344 X 08 - Lecué
On connecte deux fils électriques de résistance nulle en deux points distants de d sur un demi espace conducteur

de conductivité finie �.
Quelle est la résistance mesurée entre ces deux fils ?

Exercice 345 X 09 - Bouacida
On considère deux dipôles électrostatiques alignés sur un axe x’x (problème unidimensionnel)
1) Quelle est la force exercée par un dipôle sur l’autre ? Le résultat est-il cohérent ?
2) On considère n dipôles identiques alignés sur un axe x’x, à la température T. Quelle est la force moyenne

s’exerçant sur un dipôle ?
3) En considérant le centre de gravité de chacun des dipôles comme fixe, quel est le mouvement possible d’un

dipôle ? Quel est l’e�et de la température ? Analogie avec n particules dans un champ de pesanteur, densité de
particules par unité de volume ?

Exercice 346 X 07- Delisle
Un anneau conducteur a la forme d’un tore de diamètre moyen d et de section s. Il porte une charge Q

uniformément répartie.
Déterminer la charge Q telle que l’anneau est à la limite de rupture.
On double les dimensions. Déterminer Q’ telle que l’anneau est à la limite de rupture.

Exercice 347 CCP 10 - Mauger

1) Calculer le flux � de �B à travers le disque (figure 1).

2) Calculer le flux �’ de �B à travers la demi-sphère.
3) Pourquoi sont-ils égaux ?

4) Calculer le flux de �B à travers le disque penché (figure 2). a
O

B α

Figure 1 Figure 2

Exercice 348 CCP 11 - Belhadj

1) Déterminer les directions de �A et �B.

2) Déterminer �B en tout point M de l’espace. Tracer B(r). A.N. Calculer B
pour r=0,5mm ou 1cm avec J = 1Amm−2, µo = 4�10�7A m−1, a=1mm.

3) Déterminer �A en tout point grâce à l’équation intégrale reliant �A et �B.

z
J=J ez

a
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1) B̨ est un champ ma-
gnétique uniforme, coli-
néaire à ųz. Calculer le
flux „ de B̨ à travers
le disque de centre O et
de rayon a situé dans le
plan (Oxy) (figure 1).
2) Calculer le flux „Õ de B̨ à travers la demi-sphère.
3) Pourquoi sont-ils égaux ?
4) Calculer le flux de B̨ à travers le disque penché (figure 2).

Exercice 2 Composante radiale de B̨

Un point M de l’espace est repéré par ses coordonnées cylindriques
(r, ◊, z). Une distribution de courant (une spire circulaire par exemple)
non décrite ici crée un champ magnétique en M de la forme :

B̨(M) = Br(r, z) ųr +Bz(r, z) ųz

possédant une composante radiale Br et une composante axiale (le
long de Oz) Bz qui ne dépendent que des cordonnées r et z de M .
On s’intéresse au calcul approché de Br pour des points très voisins de
l’axe Oz, c’est à dire lorsque r est proche de zéro.

Dans la suite, on pose : B(z) = Bz(r = 0, z), valeur de la composante
axiale sur l’axe Oz.

En écrivant la conservation du flux de B̨ à travers un cylindre d’axe
Oz, de rayon r très petit et dont les bases inférieure et supérieure sont
situées aux cotes z et z + dz, montrer que, lorsque dz æ 0 :

Br(r, z) = ≠r

2
dB

dz
(z)

Exercice 3 Champ magnétique d’un câble coaxial
Un câble coaxial infini est constitué par un conducteur cylindrique

plein de rayon R1, entouré par un conducteur externe occupant le vo-
lume compris entre les cylindres de rayon R2 et R3 (R1 < R2 < R3) ;
les trois cylindres sont coaxiaux. Un courant d’intensité I circule dans
le conducteur intérieur et revient dans l’autre sens dans le conducteur
extérieur.

On supposera que les vecteurs densité volumique de courant sont
uniformes dans les volumes de chaque conducteur.

Déterminer le champ magnétique produit par ce câble en tout point
de l’espace.

Exercice 4 Champ magnétique créé par un tore
On considère un tore de section carrée, d’axe Oz, l’origine O étant

placée de telle façon que le tore se trouve dans l’espace comprise entre
les côtes z = ≠a/2 et z = +a/2. On bobine uniformément sur ce tore,
de façon jointive, N spires de fil électrique traversé par un courant
d’intensité I.

1) Déterminer la direction du champ magnétique en un point M quel-
conque et sa dépendance vis à vis des coordonnées d’espace. On
notera (r, ◊, z) les coordonnées cylindriques de M .

2) Déterminer à l’aide du théorème d’Ampère, l’expression de B̨(M)
en tout point de l’espace.

Exercice 5 Champ magnétique créé par un courant volumique
Déterminer, en tout point M de l’espace, le champ magnétique B̨(M)

créé par la distribution de courant volumique définie par :

j̨(x, y, z) = j0 exp
3

≠x

a

4
ųy si x > 0 et j̨ = 0̨ pour x < 0

On supposera que B̨ s’annule lorsque x æ +Œ.

1

2) Calculer le flux Φ′ de −→B à travers la demi-sphère.
3) Pourquoi sont-ils égaux ?

4) Calculer le flux de −→B à travers le disque penché (figure 2).

8 Composante radiale de ~B

Un pointM de l’espace est repéré par ses coordonnées cylindriques
(r, θ, z). Une distribution de courant (une spire circulaire par exemple)
non décrite ici crée un champ magnétique en M de la forme :

−→
B (M) = Br(r, z)−→er +Bz(r, z)−→ez

possédant une composante radiale Br et une composante axiale (le
long de Oz) Bz qui ne dépendent que des cordonnées r et z de M .
On s’intéresse au calcul approché de Br pour des points très voisins
de l’axe Oz, c’est à dire lorsque r est proche de zéro.

Dans les deux questions qui suivent, on pose : Baxe(z) = Bz(r =
0, z), valeur de la composante axiale sur l’axe Oz.

1) En écrivant la conservation du flux de −→B à travers un cylindre
d’axe Oz, de rayon r très petit et dont les bases inférieure et
supérieure sont situées aux cotes z et z+dz, montrer que, lorsque
dz → 0 :

Br(r, z) = −r2
dBaxe

dz (z)
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2) On reprend l’étude à l’aide des équations locales de la magné-
tostatique. On prendra les expressions de la divergence et du
rotationnel en coordonnées cylindriques dans le formulaire.

On suppose Br(r, z) et Bz(r, z) de classe C∞ en r et en z, au
voisinage de r = 0 on se contente d’un dévelopement limité à
l’ordre 1 des deux composantes Br et Bz, de la forme :

Br(r, z) = Br(0, z) + r
dBr
dr (0, z) + o(r)

et
Bz(r, z) = Baxe(z) + r

dBz
dr (0, z) + o(r)

Pour simplifier les notations on pourra poser α(z) = dBr
dr (0, z)

et β(z) = dBz
dr (0, z).

a) Montrer que l’équation de Maxwell-Thomson implique que
Br(0, z) = 0 puis que α(z) = −1

2
dBaxe

dz . Conclure.

b) On suppose que le point M(r, θ, z) est situé en dehors
de la distribution de courants. Montrer que l’équation de
Maxwell-Ampère impose que β(z) = 0.

***************

FORCES DE LAPLACE

9 Équilibre d’une spire dans un solénoïde
Une spire plate (C1), d’axe vertical, comprenant N tours de fil, de

surface S est fixée à l’extrémité du fléau d’une balance mobile autour
de l’axe horizontal passant par O. Cette spire est entièrement plongée
à l’intérieur d’un long solénoïde (C2) (que l’on pourra supposer infini)
comportant n spires par mètre.

À l’autre extrémité A du fléau est suspendu un plateau (OA =
L). Lorsqu’aucun courant ne circule, ni dans (C1) ni dans (C2), un
contrepoids permet de réaliser l’équilibre mécanique de sorte que le
fléau soit horizontal. Lorsqu’on fait passer le même courant I dans
(C1) et dans (C2), on doit placer une masse m sur le plateau pour
rétablir l’équilibre.

Calculer I en fonction de m et des données.

10 Balance de Cotton
Une balance de Cotton balance est destinée à la mesure de champ

magnétique. Elle a été mise au point par Aimé Cotton en 1900. Elle
est constituée de deux fléaux. L’un, à gauche, comprend sur sa pé-
riphérie, un conducteur métallique qui sera parcouru par un courant
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et dont une partie sera placée dans le champ magnétique, uniforme
et permanent, à mesurer. Le conducteur sera soumis à des forces de
Laplace et la balance penchera du côté de ce fléau. L’autre comporte
un plateau sur lequel on peut déposer des masses pour équilibrer la
balance et déduire ainsi la norme du champ magnétique. Le schéma
de principe de la balance est représenté ci-dessous.

Sur le fléau dessiné à gauche, les conducteurs permettent le passage
d’un courant d’intensité i, selon le parcours A1 → A2 → A3 → A4 →
A5 → A6. Les portions de circuit A2A3 et A4A5 sont des arcs de cercle
de même centre O. L’ensemble des deux fléaux constitue un système
rigide, mobile sans frottement, autour d’un axe horizontal passant par
le point O et noté Oz. On désigne par C le milieu du segment A3A4
et D le point de suspension du plateau. On note d1 la distance OC,
d2 la distance OD et ` la longueur du segment A3A4.

La procédure de mesure est la suivante :

a. Équilibrage ”à vide” : en l’absence de courant i et de masses
dans le plateau, le contrepoids C est déplacé de façon à ce que la
balance soit à l’équilibre, les trois points C, O et D étant alignés
sur l’horizontale.

b. Mesure du champ : on ferme le circuit électrique, ce qui permet
au courant d’intensité i de circuler. Le fléau de gauche penche
vers le bas ; on ajoute alors des masses dans le plateau jusqu’à ce
que la balance soit à l’équilibre, les trois points C, O et D étant
alignés sur l’horizontale.

1) Pour un courant i 6= 0, montrer que le moment résultant en O
des forces de Laplace s’exerçant sur les parties en arc de cercle
est nul.

2) À l’équilibre, en présence de courant et de champ magnétique,
établir l’expression du moment en O des forces de Laplace. En
déduire la relation liant B = ‖−→B‖, la sommem des masses posées
sur le plateau, i, `, d1, d2 et la norme g du champ de pesanteur.

3) La sensibilité de la balance étant de δm = 0,05 g, déterminer la
plus petite valeur de B mesurable pour i = 10 A, g = 10 m.s−2,
` = 5 cm et d1 = d2 = 10 cm.
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