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ÉQUATIONS DE MAXWELL EN RÉGIME VARIABLE
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L’espace, vu comme un ensemble continu de points, sera noté E .

On considère dans ce chapitre un référentiel (R) supposé galiléen,
muni d’un repère d’espace R = (Oxyz) de base cartésienne (−→ex,−→ey ,−→ez )
orthonormée directe et d’une horloge (H) permettant de mesurer le
temps t.

On étudie dans ce chapitre des champs scalaires f et vectoriels ~a
qui dépendent à la fois des trois coordonnées d’espace et du temps
t ; ces quatre coordonnées spatio-temporelles sont indépendantes les
unes des autres.
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−→ez

−→ex

Selon le système de coordonnées utilisé ces champs s’écriront sous
la forme :
1. Coordonnées cartésiennes :

f(M, t) = f(x, y, z, t)
~a(M, t) = ax(x, y, z, t)−→ex + ay(x, y, z, t)−→ey + az(x, y, z, t)−→ez

2. Coordonnées cylindriques :

f(M, t) = f(r, θ, z, t)
~a(M, t) = ar(r, θ, z, t)−→er + aθ(r, θ, z, t)−→eθ + az(r, θ, z, t)−→ez

3. Coordonnées sphériques :

f(M, t) = f(r, θ, ϕ, t)
~a(M, t) = ar(r, θ, ϕ, t)−→er + aθ(r, θ, ϕ, t)−→eθ + aϕ(r, θ, ϕ, t)−→eϕ
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Remarque :

Le temps t étant indépendant des coordonnées d’espace, on intro-
duit la dérivée partielle par rapport au temps. Par exemple, dans le
système des coordonnées sphériques on aura :

Identités remarquables :

.
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I. Les quatre équations de Maxwell en régime
variable

On considère dans ce chapitre une distribution de charge et de
courant (ρ,~j) définie en tout point M ∈ E et à chaque instant t :

ρ : (M, t) 7−→ ρ(M, t) et ~j : (M, t) 7−→ ~j(M, t)

Ces deux grandeurs sont liées par l’équation de conservation de la
charge électrique :

∀M ∈ E , ∀ t, div~j(M, t) + ∂ρ(M, t)
∂t

= 0

On appellera :
• Domaine chargé Dcharge(t) à l’instant t l’ensemble des points

vérifiant :

Dcharge(t) = {M ∈ E | ρ(M, t) 6= 0 }

• Domaine des courants Dcourant(t) à l’instant t l’ensemble des
points vérifiant :

Dcourant(t) =
¶
M ∈ E | ~j(M, t) 6= ~0

©

Schéma de l’interaction électromagnétique :

Distribution de
charge et de
courant (ρ,~j)

crée en tout
point M ∈ E
et à chaque
instant t −→

E (M, t),−→B (M, t)

se révèlent en
agissant sur une
charge ponctuelle
test qT placée en
M

−−→
Fem = qT

−→
E (M, t) + qT

−→v ∧
−→
B (M, t)

1) Équations de Maxwell

Dans le cas général, les équations de Maxwell sont au nombre de
4. Ce sont les postulats fondamentaux de l’électromagnétisme et elles
prennent la forme suivante :

a) Équation de Maxwell - Gauss : MG

En électrostatique on avait : div−→E (M) = ρ(M)/ε0 en tout point
M . Cette équation est aussi valable en régime variable quelconque :

∀M ∈ E , ∀ t, div−→E (M, t) = ρ(M, t)
ε0
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Forme intégrale :

b) Équation de Maxwell - Thomson : MT

Dans le cadre des champs magnétiques stationnaires on avait :
div−→B (M) = 0 en tout point M . Cette équation est aussi valable
en régime variable quelconque :

∀M ∈ E , ∀ t, div−→B (M, t) = 0

Le champ magnétique est à flux conservatif.

Forme intégrale :

c) Équation de Maxwell-Faraday : MF

En électrostatique on avait −→rot−→E (M) = ~0 en tout point M ∈ E .
Cette équation n’est pas valable en régime variable et on doit la mo-
difier en :

∀M ∈ E , ∀ t, −→rot−→E (M, t) = − ∂
−→
B

∂t
(M, t)

Forme intégrale :
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d) Équation de Maxwell-Ampère : MA

En régime stationnaire on avait −→rot−→B (M) = µ0~j(M). Cependant,
cette équation ne peut pas être étendue au régime variable car elle
n’est pas compatible avec l’équation de conservation de la charge élec-
trique.

En effet :

Afin de la rendre compatible avec C.C., Maxwell a transformé cette
équation en :

∀M ∈ E , ∀ t, −→rot−→B (M, t) = µ0

®
~j(M, t) + ε0

∂
−→
E

∂t
(M, t)

´

Forme intégrale :

.

Remarques :

5



MP1 Janson de Sailly Équations de Maxwell

2) Compatibilité des équations de Maxwell avec la
conservation de la charge

L’équation de conservation de la charge électrique peut se déduire
des équations de Maxwell. On a :

3) Cas particulier du régime stationnaire

4) Symétries

Les symétries sont de même nature que dans le cas des régimes sta-
tionnaires étudiés dans les chapitres précédents, sauf qu’il faut main-
tenant tenir compte à la fois des plans de symétrie ou d’antisymétrie
de la densité volumique de charge ρ et de la densité volumique de
courants ~j ainsi que de leurs invariances.
Principe de symétrie

1. Tout plan de symétrie de ρ et de ~j est un plan de symétrie de−→
E et un plan d’antisymétrie de −→B .

2. Tout plan de d’anti-symétrie de ρ et de ~j est un plan d’anti-
symétrie de −→E et un plan de symétrie de −→B .

3. Si ρ et ~j sont invariants par une translation (le long de Oz par
exemple) alors −→E et −→B sont invariants par la même translation.

4. Si ρ et ~j sont invariants par une rotation autour d’un axe ∆ alors−→
E et −→B sont invariants par la même rotation.

5) Théorème de superposition

Soient (ρ1,~j1) et (ρ2,~j2) deux distributions de charge et de cou-
rant, définies en tout point M ∈ E et à chaque instant t. On appelle
distribution superposée la distribution (ρ,~j) telle que :

ρ = α1ρ1 + α2ρ2 et ~j = α1~j1 + α2~j2

La linéarité des équations de Maxwell entraîne le théorème ci-dessous :
Théorème de superposition

Si (ρ1,~j1) crée un champ électromagnétique (−→E1,
−→
B1) et si (ρ2,~j2) crée

un champ électromagnétique (−→E2,
−→
B2), alors la distribution superpo-

sée créé un champ électromagnétique (−→E ,−→B ) vérifiant :
−→
E = α1

−→
E1 + α2

−→
E2 et −→B = α1

−→
B1 + α2

−→
B2
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6) Transformation galiléenne du champ électromagné-
tique

7) Les potentiels élctromagnétiques

II. Existence des ondes électromagnétiques
Les équations de Maxwell (1864) prédisent l’existence d’ondes élec-

tromagnétiques qui se propagent dans le vide à la vitesse de la lumière
c = 3×108 m.s−1. Cette existence ne fut constatée expérimentalement
que 23 ans plus tard, en 1887 par Heinrich Herz.

1) Le phénomène ondulatoire

2) Onde sur une corde vibrante

3) Ondes électromagnétiques dans le vide
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III. Équations de Maxwell dans la zone
ARQS

1) Définition de la zone ARQS

2) Équations de Maxwell dans la zone ARQS
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