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Equations de Maxwell

EQUATIONS DE MAXWELL EN REGIME VARIABLE
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L’espace, vu comme un ensemble continu de points, sera noté &.

On considére dans ce chapitre un référentiel (%) supposé galiléen,
muni d’un repére d’espace R = (Oxyz) de base cartésienne (5, e,, €2)
orthonormée directe et d’une horloge (H) permettant de mesurer le

temps t.

On étudie dans ce chapitre des champs scalaires f et vectoriels @
qui dépendent a la fois des trois coordonnées d’espace et du temps
t; ces quatre coordonnées spatio-temporelles sont indépendantes les
unes des autres.

z
/c‘:’(M, t)
2 M
Y

Selon le systeme de coordonnées utilisé ces champs s’écriront sous
la forme :

1. Coordonnées cartésiennes :

f(M,t) = f(z,y,2,t)
A(M,t) = az(z,y, 2,t) &3 + ay(2,y, 2,1) &) + az(2,y, 2,t) €2

2. Coordonnées cylindriques :

f(M,t) = f(r,0,z,1)
a(M,t) = a,(r,0,z1) e+ ag(r, 0, z,t) e+ a,(r,0,z,t) [

3. Coordonnées sphériques :

f(M,t) = f(r,0,0,1)
a(M,t) = a,(r,0,p,t) el + agp(r,0,¢,1) e+ ay(r,0,0,t) a;
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Remarque :

Le temps t étant indépendant des coordonnées d’espace, on intro-
duit la dérivée partielle par rapport au temps. Par exemple, dans le
systéeme des coordonnées sphériques on aura :

Identités remarquables :
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I. Les quatre équations de Maxwell en régime
variable

On considere dans ce chapitre une distribution de charge et de
courant (p,7) définie en tout point M € & et a chaque instant ¢ :

p: (M, t)—s p(M,t) et j:(M,t)—s j(M,t)

Ces deux grandeurs sont liées par I’équation de conservation de la
charge électrique :

Ip(M, t)

VM e &, Vi, divj(M,t)+ 5

=0

On appellera :

e Domaine chargé Zcarge(t) a I'instant ¢ 'ensemble des points
vérifiant :

Denarge(t) ={ M € & | p(M,t) #0}

o Domaine des courants Zcourant(t) & 'instant ¢ 'ensemble des
points vérifiant :

-@courant(t) = {M €& ‘ ;(M,t) 7& 6}

Schéma de ’interaction électromagnétique :

crée en tout
point M € &
et a chaque
instant ¢

Distribution de
charge et de

-,

courant (p, j)

E(M,t), B(M, 1)

se révelent en
agissant sur une
charge ponctuelle
test qr placée en
M

Foy = qTﬁ(M,t) +qr ¥ /\E)(M,t)

1) Equations de Maxwell

Dans le cas général, les équations de Maxwell sont au nombre de
4. Ce sont les postulats fondamentauzx de [’électromagnétisme et elles
prennent la forme suivante :

a) Equation de Maxwell - Gauss : MG

En électrostatique on avait : div B(M ) = p(M)/eo en tout point
M. Cette équation est aussi valable en régime variable quelconque :

p(M,t)
€0

VM e &, Vi, divE(M,t) =
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Forme intégrale : c) Equation de Maxwell-Faraday : MF

.. 7 = .
En électrostatique on avait rot E(M ) = 0 en tout point M € &.
Cette équation n’est pas valable en régime variable et on doit la mo-
difier en :

o8

VM e &, Vi, 1ot B(M,t) = — (M)

b) Equation de Maxwell - Thomson : MT e
Forme intégrale :

Dans le cadre des champs magnétiques stationnaires on avait :
div §(M ) = 0 en tout point M. Cette équation est aussi valable
en régime variable quelconque :

VM e &, Vt, div B(M,t) =0

Le champ magnétique est d flux conservatif.

Forme intégrale :
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d) Equation de Maxwell-Ampére : MA

. . . . -

En régime stationnaire on avait rot ?(M ) = po j(M). Cependant,
cette équation ne peut pas étre étendue au régime variable car elle
n’est pas compatible avec I’équation de conservation de la charge élec-
trique.

En effet :

Afin de la rendre compatible avec C.C., Maxwell a transformé cette
équation en :

VM e &, Vi, tot B(M,t) = o {j‘(M,t)Jrao if(M,t)}

Forme intégrale :

Remarques :
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2) Compatibilité des équations de Maxwell avec la
conservation de la charge

L’équation de conservation de la charge électrique peut se déduire
des équations de Mazwell. On a :

3) Cas particulier du régime stationnaire

4) Symétries

Les symétries sont de méme nature que dans le cas des régimes sta-
tionnaires étudiés dans les chapitres précédents, sauf qu’il faut main-
tenant tenir compte a la fois des plans de symétrie ou d’antisymétrie
de la densité volumique de charge p et de la densité volumique de
courants ; ainsi que de leurs invariances.

Principe de symétrie

1. Tout plan de symétrie de p et de j est un plan de symeétrie de
et un plan d’antisymétrie de 5.

2. Tout plan de d’anti-symétrie de p et de j est un plan d’anti-
symétrie de F et un plan de symétrie de 5.
3. Sipet ; sont invariants par une translation (le long de Oz par
exemple) alors ﬁ et E sont invariants par la méme translation.
4. Sipet 7 sont invariants par une rotation autour d’un axe A alors
et B sont invariants par la méme rotation.

5) Théoréme de superposition

Soient (p1,71) et (pa2,Jj2) deux distributions de charge et de cou-
rant, définies en tout point M € & et a chaque instant ¢. On appelle
distribution superposée la distribution (p, j) telle que :

p=aip1 + azps et jz aljl + 04252

La linéarité des équations de Maxwell entraine le théoreme ci-dessous :

Théoréme de superposition

- — — =
Si (p1, j1) crée un champ électromagnétique (E1, By) et si (p2, j2) crée
un champ électromagnétique (Esq, By), alors la distribution superpo-
sée créé un champ électromagnétique ( ,E) vérifiant :

— = — —
E = a1+ asEy et § = o1 By + as By
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6)

7)

Transformation galiléenne du champ électromagné-
tique

Les potentiels élctromagnétiques

II. Existence des ondes électromagnétiques

Les équations de Mazxwell (1864) prédisent ’existence d’ondes élec-
tromagnétiques qui se propagent dans le vide d la vitesse de la lumiere
c = 3x10% m.s71. Cette existence ne fut constatée expérimentalement
que 23 ans plus tard, en 1887 par Heinrich Herz.

1) Le phénomeéne ondulatoire

2) Onde sur une corde vibrante

3) Ondes électromagnétiques dans le vide
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I1I. Equations de Maxwell dans la zone

ARQS
1) Définition de la zone ARQS
2) Equations de Maxwell dans la zone ARQS



