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1 Le protoxyde d’azote : un gaz prétendument "fun" ? CCINP
MP 2021

La molécule N2O
Données :

• Numéros atomiques : ZN = 7 ; ZO = 8
• Électronégativités : χN = 3,0 ; χO = 3,4

Q1. a) Donner la structure de Lewis des trois formes mésomères de la molécule N2O (l’atome central
est un atome d’azote).

Les configurations électroniques de N et O sont :

N : 1s2 2s2 2p3 et O : 1s2 2s2 2p4

ce qui montre que les nombres d’électrons de valence de N et O sont respectivement :

Nv(N) = 5 et Nv(O) = 6

Le nombre d’électrons de valence de la molécule de N2O est : Nv = 5×2 + 6 = 16,
ce qui donne 8 doublets disponibles. Une première esquisse de la formule de Lewis
qui assure les liaisons covalentes entre les atomes ainsi que la règle de l’octet des
atomes périphériques est :

N N O

Cependant dans cette configuration l’atome central N ne respecte pas la règle de
l’octet. Il faut donc déplacer des doublets non liants pour assurer cette règle. On
constate qu’il y a 3 possibilités (on a aussi représenté les charges formelles) :

N N⊕ O 	 N	 N⊕ O N2− N⊕ O ⊕

b) Justifier par un argument simple laquelle est la plus probable. Expliquer si on peut conclure
à l’existence d’un moment dipolaire pour la molécule N2O.

Les formules les plus probables sont celles qui contiennent le moins de charges
formelles possible (c’est une question de stabilité de l’édifice chimique) et où les
charges formelles négatives sont portées par les atomes les plus électronégatifs. Seule
la première formule de Lewis correspond à ces deux critères :

N N⊕ O 	

L’existence d’une charge ⊕ sur N et d’une charge 	 sur O entraîne l’existence d’un
moment dipolaire électrique ~p permanent de la molécule, dirigé de O vers N

Obtention de N2O
Constante molaire des gaz parfaits : R = 8,31 J.K−1.mol−1

Données thermodynamiques à 298 K

NH4NO3(s) H2O(`) N2O(g) N2(g) O2(g)
Enthalpie standard de formation ∆fH◦ (kJ.mol−1) − 365,6 − 285,1 82,05
Entropie molaire standard S◦m (J.K−1.mol−1) 151,1 69,91 219,9 191,3 204,8
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NH4NO3 H2O
Enthalpie standard de fusion ∆fusH◦ (kJ.mol−1) 5,86
Température de fusion Tfus(K) 443
Enthalpie standard de vaporisation ∆vapH◦ (kJ.mol−1) 40,8
Température de vaporisation Tvap(K) 373

Q2. Le protoxyde d’azote est préparé par décomposition du nitrate d’ammonium. Pour une température
T < 373 K l’équation-bilan de la réaction est :

NH4NO3(s) = 2 H2O(`) + N2O(g) (1)

a) Calculer l’enthalpie et l’entropie standard de la réaction (1)

La loi de Hess donne à 298 K :

∆rH
◦
1 = ∆fH

◦(N2O(g)) + 2×∆fH
◦(H2O(`))−∆fH

◦(NH4NO3(s))
= 82,5 + 2× (− 285,1)− (−365,6) = −122,1 kJ.mol−1

Pour l’entropie standard de la réaction, on utilise sa définition :

∆rS
◦
1 = S◦m(N2O(g)) + 2× S◦m(H2O(`))− S◦m(NH4NO3(s))

= 219,9 + 2× 69,91− 151,1 = 208,6 J.K−1.mol−1

b) Pour 373 k < T < 443 K l’équation-bilan de la réaction s’écrit :

NH4NO3(s) = 2 H2O(g) + N2O(g) (2)

Calculer l’enthalpie et l’entropie standard de la réaction (2).

On commence par se placer à la température Tvap = 373 K de vaporisation de l’eau.
À cette température particulière coexistent les trois réactions :

(1) NH4NO3(s) = 2 H2O(`) + N2O(g) ∆rH
◦
1 , ∆rS

◦
1

(1’) H2O(`) = H2O(g) ∆vapH
◦, ∆vapS

◦ = ∆vapH
◦

Tvap
(2) NH4NO3(s) = 2 H2O(g) + N2O(g) ∆rH

◦
2 , ∆rS

◦
2

On constate que (2) = (1) + 2 × (1′) ce qui implique, par le théorème des combi-
naisons linéaires :

∆rH
◦
2 = ∆rH

◦
1 + 2×∆vapH

◦ et ∆rS
◦
2 = ∆rS

◦
1 + 2×∆vapS

◦

A.N. :
∆rH

◦
2 = −40,5 kJ.mol−1 et ∆rS

◦
2 = 427,4 J.K−1.mol−1

Pour 373 K < T < 443 K, ∆rH
◦
2 et ∆rS

◦
2 ne varient pas avec la température

(approximation d’Ellingham). Leurs valeurs sont donc celles calculées à 373 K.
c) Enfin, pour T > 443 K, on assiste à :

NH4NO3(`) = 2 H2O(g) + N2O(g) (3)

Calculer l’enthalpie et l’entropie standard de la réaction (3). Cette réaction est-elle ther-
modynamiquement favorisée à basse ou à haute température ? Justifier votre réponse.

On recommence le même raisonnemenet qu’à la question précédente. On se place
à la température Tfus = 443 K à laquelle coexiste les trois réactions ci-dessous :
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(2) NH4NO3(s) = 2 H2O(g) + N2O(g) ∆rH
◦
2 , ∆rS

◦
2

(2’) NH4NO3(s) = NH4NO3(`) ∆fusH
◦, ∆fusS

◦ = ∆fusH
◦

Tfus
(3) NH4NO3(`) = 2 H2O(g) + N2O(g) ∆rH

◦
3 , ∆rS

◦
3

On constate que (3) = (2)− (2′) ce qui implique, par le théorème des combinaisons
linéaires :

∆rH
◦
3 = ∆rH

◦
2 −∆fusH

◦ et ∆rS
◦
3 = ∆rS

◦
2 −∆fusS

◦

A.N. :
∆rH

◦
3 = −46,36 kJ.mol−1 et ∆rS

◦
3 = 414,1 J.K−1.mol−1

Pour 443 K < T , ∆rH
◦
3 et ∆rS

◦
3 gardent les mêmes valeurs en vertu de l’approxi-

mation d’Ellingham.

Le signe > 0 et la grande valeur de ∆rS
◦
3 viennent de l’augmentation du "désordre"

importante par passage d’une mole de liquide à 3 moles de gaz.

On remarque que ∆rH
◦
3 < 0. Selon la loi de modération de Van’t Hoff, toute

augmentation de température déplace l’équilibre chimique (3) dans le sens indirect
←. La réaction (3) est donc favorisée à basse température.

d) Exprimer l’enthalpie libre standard de réaction ∆rG◦(T ) pour T > 443 K. Calculer la
constante d’équilibre de la réaction (3) à 520 K. Commenter.

Pour T > 443 K on a :
∆rG◦(T ) = ∆rH◦3 − T ∆rS◦3

A.N. à 520 K : ∆rG◦ = − 261,7 kJ.mol−1. on en déduit :

K◦ = exp
Å
−∆rG◦

RT

ã
= 2× 1026

La réaction est donc totale à cette température.

Q3. Dans cette question, on considère un domaine de température tel que la réaction (3) est un équilibre
chimique. Quelle est alors l’influence sur cet équilibre :

a) de l’ajout de vapeur d’eau à température et volume constants ?

À l’équilibre, le quotient de réaction Qr = P (N2O)P (H2O)2

(P ◦)3 est égal à la constante
d”équilibre K◦.

Si on ajoute de la vapeur d’eau de manière isotherme et isochore on augmente
P (H2O) sans modifier P (N2O) ni K◦. Qr augmente et devient supérieur à K◦. Pour
"rejoindre" la constante d’équilibre, il faut donc que le système évolue dans le sens
indirect ←.

b) de l’ajout d’un gaz inerte à température et pression constantes ?

Si on ajoute un gaz inerte de manière isotherme et isobare on diminue les pressions
partielles, donc Qr. Pour "rejoindre" la constante d’équilibre, il faut donc que le
système évolue dans le sens direct →.
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Aspect cinétique de la décomposition de N2O
Soit la réaction de décomposition de N2O suivante, supposée totale dans le domaine de température

T considéré :

N2O(g) −→ N2(g) + 1
2 O2(g) (4)

À l’instant initial t = 0, on introduit dans un réacteur thermostaté à la température T , de volume
constant V, préalablement vidé, une quantité n1 de protoxyde d’azote à la pression initiale P1. Soit n(t)
la quantité de matière en protoxyde d’azote à une date ultérieure t quelconque.
Q4. Établir l’expression de P (t)− 3

2P1 en fonction de n(t), R, T et V.

Faisons un tableau d’avancement :
N2O N2 O2 ng

E.I. n1 0 0 n1
instant t n1 − ξ ξ ξ/2 n1 + ξ/2

On a n(t) = n1 − ξ donc ξ = n1 − n(t). La loi des gaz parfaits donne :

P (t) = ngRT

V
=
Å3n1

2 − n(t)
2

ã
RT

V
et P1 = n1RT

V

On en déduit :

P (t)− 3
2 P1 = −,

n(t)
2

RT

V

Q5. En déduire l’expression de la vitesse volumique de la réaction v = − 1
V

dn
dt en fonction de R, T et

dP
dt .

La vitesse sécrit :

v = − 1
V

dn
dt = 2

RT

dP
dt

La réaction est d’ordre 1 par rapport à N2O avec k la constante de vitesse à la température T .
Q6. Établir l’équation différentielle vérifiée par P (t). On la mettra sous la forme :

dP

dt
+ kP = 3

2kP1

On a d’autre part :

v = k [N2O](t) = k
n(t)
V

= k
2
RT

Å3
2P1 − P (t)

ã
d’où en identifiant les deux expressions de v :

dP
dt + kP = 3

2kP1

Q7. Donner l’expression de P (t) et l’allure du graphe correspondant.

La solution de cette équation est :

P (t) = Ae−kt + 3
2P1

avec comme condition initiale P (0) = P1 donc A = −P1
2 . On obtient alors :

P (t) = P1
2
Ä
3− e−kt

ä
4
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Q8. La figure 1 est la représentation graphique de ln
Ä
3− 2 P

P1

ä
en fonction du temps, tracée à l’aide

des données du tableau ci-dessus.
En tirer la valeur de k.

D’après la question précédente, la courbe de la figure 1 est f(t) = − kt. La pente de la
droite nous donne k ≈ 1

90 = 0,011 s−1 (valeur de k à 873 K).

Figure 1 – Graphe ln
Ä
3− 2 P

P1

ä
= f(t) avec t en seconde

************************

2 Champ de gravitation créé par la Terre
Assimilons la Terre à une planète sphérique de rayon RT = 6378 km, de centre O et de masse

totale mT = 5,97.1024 kg. On modélise la structure interne de la Terre par deux couches concentriques :
un noyau de rayon Rn, de masse volumique uniforme µn recouvert d’un manteau de masse volumique
uniforme µm = 4361 kg.m−3.

•
O

•
M

r

−→er

µm

µn

R
T

Un point M sera repéré par ses coordonnées sphériques (r, θ, ϕ) et on introduira la base sphérique
locale (−→er ,−→eθ ,−→eϕ). On note ~G(M) le champ de gravitation créé par la Terre en M et m(r) la masse
contenue à l’intérieur de la sphère de centre O et de rayon r.
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1. Énoncer le théorème de Gauss gravitationnel en définissant tous les termes utilisés.

Soient Dmasse une distribution de masses créant un champ de gravitation −→G (M) en tout
point M et SF une surface fermée quelconque, orientée de l’intérieur vers l’extérieur.
Alors :

Φsortant(~g/SF ) = − 4πGMint

où Mint est la masse contenu à l’intérieur de SF et où G est la constante universelle de
la gravitation.

2. Montrer que ~G(M) = G(r)−→er .

À priori nous avons :

~G(M) = Gr(r, θ, ϕ)−→er + Gθ(r, θ, ϕ)−→eθ + Gϕ(r, θ, ϕ)−→eϕ

Cependant :

• Les plans (M,−→er ,−→eθ ) et (M,−→er ,−→eϕ) sont deux plans de symétrie de la distribution
de masse contenant M . Il s’ensuit que :

Gθ = Gϕ = 0 d’où −→
G (M) = Gr(r, θ, ϕ)−→er

• De plus la distribution de masses est invariante par toute rotation autour de l’origine
O, ce qui implique que −→G également et donc que :

−→
G (M) = Gr(r)−→er

noté= G(r)−→er

3. Donner l’expression de G(r) en fonction de G, r et m(r).

Appliquons le théorème de Gauss en choisissant comme surface fermée (surface de Gauss)
SF la sphère de centre O et de rayon r. Il vient :

Φsortant(
−→
G /SF ) =

∫∫
S(O,r)

G(r)−→er .dS−→er = G(r) 4πr2 = − 4πGm(r)

puisqu’ici Mint = m(r). On a donc :

G(r) = −G m(r)
r2

4. Expliciter m(r) en fonction de r. En déduire le champ de gravitation −→G (M) à l’extérieur de la
Terre (r > RT ).

Il faut distinguer les trois cas r 6 Rn, Rn < r 6 RT et RT < r. Un calcul simple conduit
à :

m(r) =


µn

4π
3 r

3 si r 6 Rn

µn
4π
3 R

3
n + µm

4π
3
(
r3 −R3

n

)
si Rn < r 6 RT

mT si RT < r

On remarquera que dans ce modèle :

mT = µn
4π
3 R3

n + µm
4π
3
(
R3
T −R3

n

)
6
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D’après le théorème de Gauss gravitationnel, on en déduit que :

G(r) = −G mT

r2 si RT < r

Remarque :

À la surface de la Terre, G(RT ) a pour valeur numérique :

|G(RT )| = 6,67.10−11 × 5,97.1024

6378 0002 = 9,79 m.s−2

ce qui est la valeur attendue (la différence avec 9,81 provient de la précision des données
numériques sur G, mT et RT ).

5. Le noyau terrestre a un rayon Rn = 3480 km et une masse de mn = 2,0.1024 kg.

a) Quelle est la masse volumique µn du noyau ?

On a :
µn = mn

4πR3
n/3

= 11,3.103 kg.m−3

ce qui représente 11,3 fois la masse volumique de l’eau. Le noyau terrestre a donc
une densité d = 11,3.

b) Déterminer l’expression et la valeur numérique du champ de gravitation à la frontière noyau-
manteau.

À la frontière noyau-manteau on a :

|G(Rn)| = G
m(Rn)
R2
n

= G
mn

R2
n

= 11,0 m.s−2

soit un champ de gravitation légèrement supérieur à celui qui existe à la surface
terrestre.

c) Des trois représentations de G(r) ci-dessous, identifier celle qui correspond au modèle déve-
loppé dans cet exercice. À quel type de modèle peuvent correspondre les deux autres courbes ?
On donnera les expressions des masses volumiques correspondantes.

Il s’agit manifestement de la représentation (2). Pour analyser les deux autres
représentations on utilise l’équation de Maxwell-Gauss de la gravitation :

div−→G = − 4πGµ donc 1
r2

d(r2G(r))
dr = − 4πGµ

• La représentation (3) correspond à un champ de gravitation de la forme : G(r) =
−αr où α est une constante positive. On en déduit :

µ = 3α
4πG

ce qui correspond à une masse volumique uniforme de la Terre. Celle-ci ne peut
alors qu’être égale à :

µ = mT

4πR3
T /3
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• La représentation (1) correspond à un modèle de noyau de masse volumique
uniforme (car G est à croissance linéaire de 0 à Rn), puis un champ gravitationnel
constant G(r) = G(RT ) = −GmT /R

2
T jusqu’à la surface de la Terre. Dans la

partie Rn < r 6 RT on a donc :

µ = − 1
4πG

1
r2

d(r2G(RT ))
dr = mT

4πR2
T

1
r2

d(r2)
dr

= mT

2πR2
T

1
r

c’est à dire une masse volumique non uniforme, avec une décroissance en 1/r.

−G(r) (en m.s−2)

r (en 103 km)

1

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7
8
9

10
11

−G(r) (en m.s−2)

r (en 103 km)

2

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7
8
9

10
11

−G(r) (en m.s−2)

r (en 103 km)

3

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7
8
9

10
11

3 Champ électrostatique créé une distribution non uniforme
L’espace est ramené au repère (Oxyz). Une distribution de charges statique est caractérisée par une

densité volumique de charge ρ(M) en un point M situé à une distance r de l’origine O donnée par :

ρ(M) = ρ0
a

r
si r 6 a et ρ(M) = 0 si r > a

où ρ0 est une constante positive.
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1. Exprimer la charge totale Q de cette distribution en fonction de ρ0 et a.

L’élément de volume en coordonnées sphériques étant dτM = r2 sin θ dθ dϕ la charge
totale est donnée par :

Q =
∫ a

0
ρ0a r dr ×

∫ π

0
sin θ dθ ×

∫ 2π

0
dϕ = 4πρ0a

3

2

2. a) Étudier les symétries du champ électrostatique créé au point M de coordonnées sphériques
(r, θ, ϕ).

À priori on a :
−→
E (M) = Er(r, θ, ϕ)−→er + Eθ(r, θ, ϕ)−→eθ + Eϕ(r, θ, ϕ)−→eϕ

O
•

−→er

M

−→eϕ

−→eθ

(M,−→er ,−→eϕ) est un plan de symétrie de la densité
volumique de charges car ρ(N) = ρ(N ′) pour
tous points N et N ′ symétriques par rapport à
ce plan.

Un schéma similaire montrerait qu’il en va de
même pour le plan (M,−→er ,−→eθ )

•

•

r N

N

rN′N ′

• Plans de symétrie

Les plans (M,−→er ,−→eθ ) et (M,−→er ,−→eϕ) sont des plans de symétrie de la densité
volumique de charges donc des plans de symétrie de −→E par le principe de Curie,
contenant M . Il s’ensuit que :

Eθ = Eϕ = 0 d’où −→
E (M) = Er(r, θ, ϕ)−→er

• Invariances

La densité volumique de charges est invariante par rotation autour de l’origine
O et donc −→E l’est également. On a donc :

Er = Er(r) d’où −→
E (M) = Er(r)−→er

b) Montrer que −→E (O) = −→0

À priori, −→E (O) = Ex(O)−→ex + Ey(O)−→ey + Ez(O)−→ez .

Or les plans (Oxy), (Oyz) et (Oxz) sont trois plans de symétries des charges conte-
nant le point O. Il s’agit donc également de plans de symétrie de −→E et on en déduit
que :

Ex(O) = Ey(O) = Ez(O) = 0

9
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3. Déterminer −→E (M) en tout point M :

a) En utilisant le théorème de Gauss.

Le champ électrique étant à symétrie sphérique, on choisit comme surface fermée
SF (surface de Gauss) la sphère de centre O et de rayon r. On a :

Φsortant(
−→
E/SF ) = 4πr2E(r) = Qint

ε0

Notons B(O, r) la boule de centre O et de rayon r. On voit que Qint est la charge
contenue dans B(O, r) et on a donc :

Qint =
∫∫∫

B(O,r)
ρ(N) dτN

où N est un point qui décrit le volume de B(O, r). Soient (rN , θN , ϕN ) les coordon-
nées sphériques du point N . On doit distinguer deux cas :

1er cas r 6 a :

Qint =
∫ r

0
ρ0

a

rN
r2
N drN ×

∫ π

0
sin(θN ) dθN ×

∫ 2π

0
dϕN

= 4πρ0a r
2

2 = 2πρ0a r
2

On a donc :
E(r) = ρ0a

2ε0
si r 6 a

2ème cas r > a :

Dans ce cas Qint est la charge contenue dans la boule B(O, a). On a donc :

Qint =
∫ a

0
ρ0a rN drN ×

∫ π

0
sin θN dθN ×

∫ 2π

0
dϕN = 4πρ0a

3

2

On retrouve la charge électrique calculée à la question 1.. On obtient alors :

E(r) = ρ0a
3

2ε0 r2 si r > a

b) En utilisant l’équation de Maxwell-Gauss.

Pour un champ à symétrie sphérique on a :

div (Er)−→er ) = 1
r2

d
dr
(
r2E(r)

)
1er cas 0 < r 6 a :

1
r2

d
dr
(
r2E(r)

)
= ρ0
ε0

a

r
donc E(r) = ρ0 a

2ε0
+ C1
r2

Or E(r) doit rester fini lorsque r → 0+ ce qui impose C1 = 0.
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2ème cas r > a :

1
r2

d
dr
(
r2E(r)

)
= 0 donc E(r) = C2

r2

La constante C2 est déterminée en imposant la continuité de E en r = a, ce
qui donne :

C2
a2 = ρ0 a

2ε0
d’où C2 = ρ0 a

3

2ε0

On remarque la discontinuite de E(r) en r = 0. Ceci est dû au fait que ρ n’est pas
définie en r = 0, ce qui montre div−→E ne l’est pas non plus et donc que les dérivées
partielles de −→E par rapport aux coordonnées d’espace ne le sont pas non plus : −→E
ne peut donc pas être continu en r = 0.

11


