MP1 Janson de Sailly Corrigé du DM n°10

1 Le protoxyde d’azote : un gaz prétendument "fun" ? CCINP
MP 2021

La molécule N,O
Données :
e Numéros atomiques : Zy =7; Zp =8

o Electronégativités : yn = 3,0; xo = 3,4

Q1. a) Donner la structure de Lewis des trois formes mésomeres de la molécule NoO (I’atome central
est un atome d’azote).

Les configurations électroniques de N et O sont :
N:1s22s22p3 et O:1s? 282 2p?
ce qui montre que les nombres d’électrons de valence de N et O sont respectivement :
Ny(N) =5et Ny(O) =6
Le nombre d’électrons de valence de la molécule de NoO est : N, = 5x2 + 6 = 16,
ce qui donne 8 doublets disponibles. Une premiére esquisse de la formule de Lewis

qui assure les liaisons covalentes entre les atomes ainsi que la regle de l'octet des
atomes périphériques est :

IN—N—0|

Cependant dans cette configuration I’atome central N ne respecte pas la régle de
Poctet. 11 faut donc déplacer des doublets non liants pour assurer cette regle. On
constate qu’il y a 3 possibilités (on a aussi représenté les charges formelles) :

IN=N®—01® (N®=N®=0, N> —N®=0/®

b) Justifier par un argument simple laquelle est la plus probable. Expliquer si on peut conclure
a Uezistence d’un moment dipolaire pour la molécule NoO.

Les formules les plus probables sont celles qui contiennent le moins de charges
formelles possible (c’est une question de stabilité de ’édifice chimique) et ou les
charges formelles négatives sont portées par les atomes les plus électronégatifs. Seule
la premiere formule de Lewis correspond & ces deux criteres :

IN=N®—Q|°

L’existence d’'une charge @ sur N et d’une charge © sur O entraine ’existence d’un
moment dipolaire électrique p permanent de la molécule, dirigé de O vers N

Obtention de N,O

Constante molaire des gaz parfaits : R = 8,31 J.K~!.mol™*
Données thermodynamiques a 298 K

NHiNOs) | HaOgp | NaOg) | Nagg) | Os)
Enthalpie standard de formation AH° (kJ.mol™ ') —365,6 | —285,1| 82,05
Entropie molaire standard S2, (J.K~t.mol™1) 151,1 69,91 | 219,9 | 191,3 | 204,8
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NH4NOj3 | H,O
Enthalpie standard de fusion AgH® (kJ.mol™!) 5,86
Température de fusion Ttys(K) 443
Enthalpie standard de vaporisation Ay,,H° (kJ.mol~1) 40,8
Température de vaporisation Ty,p(K) 373

Q2. Le protoxyde d’azote est préparé par décomposition du nitrate d’ammonium. Pour une température
T < 373 K l’équation-bilan de la réaction est :

a)

NH4NO3(S) =2 H, O(g) + No O(g) (1)
Calculer Uenthalpie et 'entropie standard de la réaction (1)

La loi de Hess donne & 298 K :
A,«Hf = AfHO(NQO(g)) + 2 x AfHO(HQO(g)) — AfHO(NH4NO3(S))
=82,5+2x (—285,1) — (—365,6) = —122,1 kJ.mol !
Pour I'entropie standard de la réaction, on utilise sa définition :

AST = SZ@(NQO(Q)) +2x S%(HQO(@)) — SZ,L(NH4N03(S))
= 219,94+ 2 x 69,91 — 151,1 = 208,6 J. K~ '.mol™!

Pour 373 k <T < 443 K l’équation-bilan de la réaction s’écrit :
NH4N03(S) =2 Hy O(g) + Ny O(g) (2)
Calculer Uenthalpie et 'entropie standard de la réaction (2).

On commence par se placer a la température Tya, = 373 K de vaporisation de 'eau.
A cette température particuliere coexistent les trois réactions :

(1) NH4N03(S) =2 HgO(g) + NQO(g) ATHf, ArSf

AvapH®

(1) H20(y) = H20(y) AvapH®, AvapS° = Tip
vap

(2) NH4N03(S) =2 HQO(g) + NQO(g) ATHQO, ATSS

On constate que (2) = (1) + 2 x (1’) ce qui implique, par le théoréme des combi-
naisons linéaires :

AHS = AvHY +2 X AapH® et 2,85 = ApSY +2 X AyapS°

A.N. :
AGHS = —40,5 kJmol™! et A,SS = 4274 J K ! .mol ™

Pour 373 K < T < 443 K, A,H3 et A,S5 ne varient pas avec la température
(approximation d’Ellingham). Leurs valeurs sont donc celles calculées a 373 K.

Enfin, pour T > 443 K, on assiste a :
NH4N03(4) =2 H, O(g) + No O(g) (3)

Calculer Uenthalpie et Uentropie standard de la réaction (3). Cette réaction est-elle ther-
modynamiquement favorisée d basse ou d haute température ¢ Justifier votre réponse.

On recommence le méme raisonnemenet qu’a la question précédente. On se place
a la température T, = 443 K a laquelle coexiste les trois réactions ci-dessous :
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(2) NH4N03(S) =2 HQO(g) + NQO(g) ATHS, A,,«Sé)
ApsH®
(2’) NH4N03(S) = NH4N03(5) AgsH, ApysS° = ;"T
(3) NH4N03(5) =2 HQO(g) + NQO(g) Arﬂg, A,,Sg
On constate que (3) = (2) — (2’) ce qui implique, par le théoréme des combinaisons

linéaires :

|AHS = A HS — ApsH® et A8 = AnS5 — ApysS°
AN.:

A HY = —46,36 kJ.mol ™' et A,S5 =414,1 J K L.mol™!

Pour 443 K < T, A, HS et A, S5 gardent les mémes valeurs en vertu de I’approxi-
mation d’Ellingham.

Le signe > 0 et la grande valeur de A,.S5 viennent de 'augmentation du "désordre"
importante par passage d’une mole de liquide a 3 moles de gaz.

On remarque que A,H5 < 0. Selon la loi de modération de Van’t Hoff, toute
augmentation de température déplace I’équilibre chimique (3) dans le sens indirect
+. La réaction (3) est donc favorisée a basse température.

d) Exprimer lenthalpie libre standard de réaction A.G°(T) pour T > 443 K. Calculer la
constante d’équilibre de la réaction (3) a 520 K. Commenter.

Pour T'> 443 K on a :
AGY(T) = AyHS — T A, S5

AN. 3520 K: A, G° = — 261,7 kJ.mol~!. on en déduit :

AG°
RT

Ko—exp<— )—2><1026

La réaction est donc totale a cette température.

Q3. Dans cette question, on considére un domaine de température tel que la réaction (3) est un équilibre
chimique. Quelle est alors linfluence sur cet équilibre :

a) de l'ajout de vapeur d’eau a température et volume constants ?

~ 2
A TDéquilibre, le quotient de réaction Q, = w est égal a la constante

d”équilibre K°.
Si on ajoute de la vapeur d’eau de maniere isotherme et isochore on augmente
P(H30) sans modifier P(N2O) ni K°. @), augmente et devient supérieur & K°. Pour

"rejoindre" la constante d’équilibre, il faut donc que le systeme évolue dans le sens
indirect <.

b) de l'ajout d’un gaz inerte a température et pression constantes ?

Si on ajoute un gaz inerte de maniére isotherme et isobare on diminue les pressions
partielles, donc @Q,. Pour 'rejoindre" la constante d’équilibre, il faut donc que le
systéme évolue dans le sens direct —.
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Aspect cinétique de la décomposition de N,O
Soit la réaction de décomposition de NoO suivante, supposée totale dans le domaine de température
T considéré :
1
N20(g) — Nagg) + 5 O2(g) (4)

A Uinstant initial t = 0, on introduit dans un réacteur thermostaté d la température T, de volume
constant V, préalablement vidé, une quantité ny de protozyde d’azote a la pression initiale Py. Soit n(t)
la quantité de matiere en protoryde d’azote a une date ultérieure t quelconque.

Q4. Etablir expression de P(t) — 3Py en fonction de n(t),R,T et V.

Faisons un tableau d’avancement :

N2O N2 02 ng
E.IL ni 0 0 ni
instant ¢ | ny —& | £ | /2| n1+&/2

On a n(t) =ny — & donc £ = ny — n(t). La loi des gaz parfaits donne :

ngRT 3nq n(t)) RT n1 RT
P(t :97:<——— — et P =
="y 2 2 /) v © TV
On en déduit :
3 n(t) RT
Pt)—=-P=— ——
H-3h="757
Q5. En déduire lexpression de la vitesse volumique de la réaction v = —%% en fonction de R, T et
dp
E.
La vitesse sécrit :
~1ldn 2 dP
Vdt RT dt

La réaction est d’ordre 1 par rapport a NoO avec k la constante de vitesse d la température T .
Q6. Etablir ’équation différentielle vérifiée par P(t). On la mettra sous la forme :

dP 3

On a d’autre part :
B oon(t) 2 (3 )
v=Fk[NOJ(t) =k v _kRT 2P1 P(t)

d’ou en identifiant les deux expressions de v :

dP 3

— + kP =—kP

a " 2" !

Q7. Donner lexpression de P(t) et l'allure du graphe correspondant.

La solution de cette équation est :
3
P(t)=Ae ™+ 5P

avec comme condition initiale P(0) = P, donc A = —%. On obtient alors :

P(t) = % (3 — e_kt)
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8. La figure 1 est la représentation graphique de In (3 —2L-) en fonction du temps, tracée d Uaide
Py
des données du tableau ci-dessus.
En tirer la valeur de k.

D’apres la question précédente, la courbe de la figure 1 est f(¢t) = — kt. La pente de la
droite nous donne k ~ g5 = 0,011 s™* (valeur de k & 873 K).
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FIGURE 1 — Graphe In (3 - QP%) = f(t) avec t en seconde
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2 Champ de gravitation créé par la Terre

Assimilons la Terre a une planéte sphérique de rayon Rp = 6378 km, de centre O et de masse
totale my = 5,97.10°* kg. On modélise la structure interne de la Terre par deuz couches concentriques :
un noyau de rayon R,, de masse volumique uniforme p, recouvert d’un manteau de masse volumique
uniforme py, = 4361 kg.m™3.

Un point M sera repéré par ses coordonnées sphériques (r,0,p) et on introduira la base sphérique
locale (&7,e4,e3). On note G(M) le champ de gravitation créé par la Terre en M et m(r) la masse
contenue a lintérieur de la sphére de centre O et de rayon r.
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1. Enoncer le théoréme de Gauss gravitationnel en définissant tous les termes utilisés.

Soient Pmasse une distribution de masses créant un champ de gravitation a(M ) en tout
point M et Sp une surface fermée quelconque, orientée de l'intérieur vers 'extérieur.
Alors :

‘ Pgortant (g/SF) = —4nG Ming,

ou Myt est la masse contenu a l'intérieur de Sr et ou G est la constante universelle de
la gravitation.

2. Montrer que G(M) = G(r) &,.
A priori nous avons :
G(M) = G,(r,0,0) & + Go(r,6,0) & + G (r,6,0) &
Cependant :

o Les plans (M, er, e_g) et (M, er, eTZ) sont deux plans de symétrie de la distribution
de masse contenant M. Il s’ensuit que :

Go=G,=0 dott G(M)=0,(r0,0)e

e De plus la distribution de masses est invariante par toute rotation autour de ’origine
O, ce qui implique que a également et donc que :

d(M) =G,(r) e "L g(r) e

3. Donner Uexpression de G(r) en fonction de G, r et m(r).

Appliquons le théoréme de Gauss en choisissant comme surface fermée (surface de Gauss)
S la sphere de centre O et de rayon r. Il vient :

Psortant ( B/SF // )er.dS el = G(r)dmr? = — 4nGm(r)
S(O,r)

puisqu’ici Min = m(r). On a donc :

4. FEzxpliciter m(r) en fonction de r. En déduire le champ de gravitation 6(M) a Uextérieur de la
Terre (r > Rrp).

Il faut distinguer les trois cas r < R, R, <1 < R et Ry < r. Un calcul simple conduit
a:

Mn4§rr3 si r<R,
m(r) = un%ng + 3T 3 (7“ - R3) si R,<r<Rr
mr Si RT <r

On remarquera que dans ce modele :

mr = ,un R3 + pUm (RT Ri)
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D’apres le théoreme de Gauss gravitationnel, on en déduit que :

G(r) =G5 siRp<r

Remarque :

A la surface de la Terre, G (Rr) a pour valeur numérique :

5,97.10%4

Rp)| =667.107 0 x 22—
G (Br)| =6, " 63780002

=9.79 m.s~?2

ce qui est la valeur attendue (la différence avec 9,81 provient de la précision des données
numériques sur G, mp et Ryp).

5. Le noyau terrestre a un rayon R, = 3480 km et une masse de m, = 2,0.10** kq.

2)

Quelle est la masse volumique p,, du noyau ?

On a:

Mp 3 -3
= —— =11,3.10° ke.
HUn I R3/3 ) g.m

ce qui représente 11,3 fois la masse volumique de ’eau. Le noyau terrestre a donc
une densité d = 11,3.

Déterminer Uexpression et la valeur numérique du champ de gravitation a la frontiere noyau-
manteau.

A la frontiére noyau-manteau on a :

m(R, My,

soit un champ de gravitation légerement supérieur a celui qui existe a la surface
terrestre.

Des trois représentations de G(r) ci-dessous, identifier celle qui correspond au modéle déve-
loppé dans cet exercice. A quel type de modéle peuvent correspondre les deux autres courbes ?
On donnera les expressions des masses volumiques correspondantes.

Il s’agit manifestement de la représentation (2). Pour analyser les deux autres
représentations on utilise ’équation de Maxwell-Gauss de la gravitation :

1 d(r?
diva = —4nG p donc —QM =—A4nGp

r dr
o Lareprésentation (3) correspond a un champ de gravitation de la forme : G(r) =

— ar ou «a est une constante positive. On en déduit :

3a

H= 4G

ce qui correspond a une masse volumique uniforme de la Terre. Celle-ci ne peut
alors qu’étre égale a :
mr

N~ 4nR3)3
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o La représentation (1) correspond a un modele de noyau de masse volumique
uniforme (car G est a croissance linéaire de 0 a R,,), puis un champ gravitationnel
constant G(r) = G(Rr) = —G mr/R% jusqu’a la surface de la Terre. Dans la
partie R, < r < Rp on a donc :

B 1 1d(r*G(Ry))  mp 1 d(r?)
F="4G 2™ dar 4nRZ 2 dr

o mr 1

T 27RZ 1

c’est & dire une masse volumique non uniforme, avec une décroissance en 1/r.

—G(r) (en m.s™2)

11 +

T T T T T T T (en 103 km)

11 +

r (en 10% km)

o

11 H

r (en 10% km)

3 Champ électrostatique créé une distribution non uniforme

L’espace est ramené au repére (Oxyz). Une distribution de charges statique est caractérisée par une
densité volumique de charge p(M) en un point M situé d une distance v de l'origine O donnée par :

p(M):pog sir<a et p(M)=0 sir>a
r

ol po est une constante positive.
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1. Exprimer la charge totale Q de cette distribution en fonction de pgy et a.

L’élément de volume en coordonnées sphériques étant drp; = r2sinfdfdyp la charge
totale est donnée par :

a ™ 2w 4 3
Q= / poardr x / sin 6 df x dp = Thod
0 0 0 2

2. a) Etudier les symétries du champ électrostatique créé au point M de coordonnées sphériques
(r,0,¢).

A priori on a :

E(M) = E(r,0,0) & + Ey(r.0,0) & + Eo(r.0,0) &,

(M, er, e?) est un plan de symétrie de la densité
volumique de charges car p(N) = p(N') pour
tous points N et N’ symétriques par rapport a
ce plan.

Un schéma similaire montrerait qu’il en va de
méme pour le plan (M, er. 6—(3)

e Plans de symétrie

Les plans (M, e, e3) et (M 76—72,5;) sont des plans de symétrie de la densité
volumique de charges donc des plans de symétrie de E par le principe de Curie,
contenant M. Il s’ensuit que :

Ey = ESO =0 dou ﬁ(M) = ET(T,H,(P) €_T>

e Invariances

La densité volumique de charges est invariante par rotation autour de 'origine
O et donc E lest également. On a donc :

E, = E.(r) don |E(M)=E(r)e

b) Montrer que E(O) Y

A priori, E(0) = E,(0) & + E,(0) &, + E.(0) ..

Or les plans (Ozxy), (Oyz) et (Oxz) sont trois plans de symétries des charges conte-
nant le point O. Il s’agit donc également de plans de symétrie de E et on en déduit
que :
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3. Déterminer E(M) en tout point M :

a) En utilisant le théoréme de Gauss.

Le champ électrique étant a symétrie sphérique, on choisit comme surface fermée
Sp (surface de Gauss) la sphére de centre O et de rayon r. On a :

_ Qint

Buortant (E /S5) = 4112 E(r) -

Notons B(O,r) la boule de centre O et de rayon r. On voit que Qiy est la charge
contenue dans B(O,r) et on a donc :

Qint = ///B(O,r) p(N)dry

ou N est un point qui décrit le volume de B(O,r). Soient (ry, 0y, ¢n) les coordon-
nées sphériques du point N. On doit distinguer deux cas :

1" cas r < a:

r a o m . 2
Qint = /0 Po ETN dry X /0 sin(fy) dfn x ; don
4 2
— % — 2mpoar?
On a donc :
E(r)= go—a si r<a
€0
28M€ cas r > q :

Dans ce cas Qint est la charge contenue dans la boule B(O,a). On a donc :

a ™ 2 4 3
Qint = / pPoaATN dTN X / sin GN d9N X ngN = 7rp20a
0 0 0

On retrouve la charge électrique calculée a la question 1.. On obtient alors :

3
poa® .

E(r) = si r>a

(r) 2e0 12

b) En utilisant I’équation de Mazwell-Gauss.
Pour un champ a symétrie sphérique on a :
1 d
. -\ _ 2

div (ET‘) 67‘) = ﬁ a (7‘ E(T))

1" cas 0<r<a:

1d (TQE(T)) P2 one E(r)

_wa G
r2 dr €0 T 2¢0 7r2

Or E(r) doit rester fini lorsque 7 — 0% ce qui impose C; = 0.

10
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2°M€ cas r > a :

1d, Cs
ol (r*E(r)) =0 donc E(r)= )
La constante C9 est déterminée en imposant la continuité de F en r = a, ce
qui donne :
Cy  poa poa®
— =— dou |(Cs =
a2 280 2 28()

On remarque la discontinuite de E(r) en r = 0. Ceci est dii au fait que p n’est pas
définie en r = 0, ce qui montre div E ne l'est pas non plus et donc que les dérivées

partielles de par rapport aux coordonnées d’espace ne le sont pas non plus :
ne peut donc pas étre continu en r = 0.

11



