
MP1 Lycée Janson de Sailly Exercices équations de Maxwell

1 Décharge dans un gaz

Donnée : pour un champ vectoriel de la forme ~a = a(r, t)−→er dans le
système des coordonnées sphériques :

div~a = 1
r2

∂

∂r

(
r2a(r, t)

)
L’espace entre deux sphères métalliques minces (S1) et (S2), de même

centre O et de rayons respectifs R1 et R2 avec R1 < R2 est rempli par
un gaz initialement isolant et dont les constantes électromagnétiques
peuvent être confondues avec celles du vide, c’est à dire ε0 et µ0.
Initialement, (S2) n’est pas chargée et (S1) porte la charge électrique

Q. La sphère métallique (S1) est creuse, c’est à dire vide de toute
matière et, de la même façon, le milieu extérieur à (S2), caractérisé par
r > R2, est vide lui aussi.

On suppose qu’à l’instant t = 0, le gaz devient brusquement conduc-
teur et qu’il obéit à la loi d’Ohm locale, ce qui signifie que ~j = γ ~E en
tout point du gaz, γ étant la conductivité électrique (grandeur supposée
constante). Pour t > 0 on supposera que :

~j(M, t) = j(r, t)−→er et ρ(M, t) = ρ(r, t)

en tout point M de coordonnées sphériques (r, θ, ϕ) telles que
R1 6 r 6 R2.

1) En analysant les symétries du problème, montrer que le champ
magnétique −→B ne peut être que nul en tout point de l’espace.
Montrer de même que, −→er désignant le vecteur unitaire radial des
coordonnées sphériques, le champ électrique est nécessairement de
la forme :

−→
E (M) = E(r, t)−→er pour toute valeur de r = OM

2) a) Déterminer à l’aide des équations de Maxwell une équation
différentielle par rapport au temps, vérifiée par E(r, t) pour
R1 < r < R2. En déduire l’expression de E(r, t) en fonction
de t, r et Q. On introduira un temps caractéristique τ pour
exprimer ce champ.

b) Déterminer E(r, t) pour r < R1 puis r > R2.
3) Que vaut la densité volumique de charges ρ dans l’espace entre

les deux sphères ? Quelle est l’expression de ~j ? Est-ce compatible
avec l’équation de conservation de la charge électrique ?

2 Tube à vide

Un tube à vide est constitué de deux armatures métalliques planes
A et C enfermées dans une ampoule où règne le vide. La cathode C, de
potentiel nul, émet par effet thermoélectrique des électrons sans vitesse
initiale qui sont attirés par l’anode A maintenue au potentiel VA > 0.

On étudie le régime stationnaire d’écoulement des électrons, de
charge − e et de masse m, de C vers A ce qui correspond à un courant
d’intensité constante I.

La cathode C qui occupe le plan x = 0 et l’anode A, qui occupe le
plan x = L, sont planes, parallèles et ont même surface en regard S.

!

VC = 0 

O x 

C A 

VA > 0 
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1) On suppose que les grandeurs de ce problème ne dépendent que
de la distance x à la cathode (0 < x < L).
a) Écrire l’équation locale satisfaite par le potentiel électrique

V (x), en introduisant le nombre n(x) d’électrons par unité
de volume à l’abscisse x.

b) Quelle est la relation entre la densité volumique de courant
j(x), n(x) et la vitesse u(x) des électrons à l’abscisse x ? Relier
j(x) à l’intensité I(x) qui traverse la surface plane d’aire S,
perpendiculaire à Ox et située à l’abscisse x. Montrer que
cette intensité ne dépend pas de x.

c) En utilisant l’énergie mécanique d’un électron, relier u(x) à
V (x).

2) Montrer que l’équation différentielle vérifiée par V (x) est de la
forme :

d2V

dx2 (x) = K√
V (x)

où K est une constante à exprimer en fonction de e, m, S, ε0 et
l’intensité I.

3) a) En multipliant l’équation précédente par dV/dx et en inté-
grant, montrer que le potentiel V (x) vérifie l’équation :

dV
dx (x) = 2

√
K [V (x) ]1/4

On admettra que le champ électrique est nul au niveau de la
cathode.

b) Déduire de l’équation précédente que l’intensité I du courant
est liée au potentiel VA de l’anode par la relation : I = a V

3/2
A

et déterminer la constante a.

Application numérique : S = 1,0 cm2 ; L = 2 cm ; calculer I
si VA = 80 V. On donne : m = 9,1.10−31 kg ; e = 1,6.10−19

C ; ε0 = 8,85.10−12 F/m.

3 Solénoïde en ARQS
On donne en coordonnées cylindriques :

−→rot−→A =
(1
r

∂Az
∂θ
− ∂Aθ

∂z

)
−→er+

(
∂Ar
∂z
− ∂Az

∂r

)
−→eθ+1

r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)
−→ez

div−→A = 1
r

∂

∂r
(rAr) + 1

r

∂Aθ
∂θ

+ ∂Az
∂z

On considère un solénoïde de longueur L entièrement situé dans la
zone ARQS. Il est formé de spires jointives circulaire d’axe Oz et de
rayon R, parcourues par un courant d’intensité i(t) = Im cos(ωt). On
note n le nombre de spires par mètre.
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1) a) À quelle condition sur ω, L et R, tous les points du solénoïde
sont-ils situés dans la zone A.R.Q.S. ?

b) Écrire les équations de Maxwell en un point M de coordon-
nées cylindriques (r, θ, z) situé à l’intérieur du solénoïde :
r < R et −L/2 < z < L/2.

2) À l’aide d’une étude des symétries :

a) Montrer qu’en tout point M de coordonnées cylindriques
(r, θ, z) il existe un champ électrique de la forme −→E (M, t) =
E(r, z, t)−→eθ .

b) Montrer que −→E = ~0 en tout point de l’axe Oz.
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3) On étudie le champ électromagnétique dans la région centrale du
solénoïde (zone grisée sur le schéma) de longueur `, suffisamment
loin des bords pour supposer qu’en tout point M(r, θ, z) de cette
zone on puisse écrire :

−→
B (M, t) = B0(r, z) cos(ωt)−→ez

a) Montrer que B0(r, z) ne dépend ni de r, ni de z.
b) En supposant que le champ magnétique est nul en dehors du

solénoïde, déterminer B0 en fonction de µ0, n et Im.
c) On se place dans la région centrale du solénoïde (zone grisée).

Montrer à l’aide des équations de Maxwell que E(r, z, t) ne
dépend pas de z et déterminer l’expression de E(r, t).

d) Retrouver l’expression de E(r, t) à l’aide de la forme intégrale
de l’équation de Maxwell-Faraday.

4 Condensateur en régime variable. Limites de
l’ARQS

Un condensateur est constitué de deux disques métalliques de même
rayon a, d’axe Oz situés dans les plans z = +h et z = −h. On admet
que −→E (M, t) est colinéaire à −→ez entre les armatures du condensateur.
Pour h � a, ce modèle est justifié sauf au voisinage immédiat des
bords, c’est-à-dire en r = a. Le condensateur est soumis à une ten-
sion sinusoïdale de fréquence f = ω/2π et on souhaite déterminer la
structure du champ électromagnétique créé à l’intérieur de celui-ci.

Formules d’analyse vectorielle :
• Laplacien d’une fonction f(r) en coordonnées cylindriques :

4f = d2f

dr2 + 1
r

df
dr

• −→rot (−→rot~a) = −−→grad (div−→a )−∆−→a
• Pour −→a = f −→ez on a ∆−→a = (∆ f)−→ez .
On cherche un champ électrique entre les deux armatures du conden-

sateur, de la forme :
−→
E = E(r, z) cos(ωt)−→ez

1) En utilisant une des équations de Maxwell, montrer que E(r, z) ne
dépend pas de z. Dans la suite on le notera E(r)

2) Toujours à partir des équations de Maxwell, montrer que le champ
électrique −→E (M, t) dans l’espace entre les deux armatures vérifie :

4
−→
E − 1

c2
∂2−→E
∂t2

= −→0

3) En déduire que E(r) vérifie l’équation différentielle :

d2E

dr2 + 1
r

dE
dr + ω2

c2 E(r) = 0

4) On cherche la solution de cette équation sous la forme d’un déve-
loppement en série entière en posant :

E(r) = E(0)
∞∑
n=0

an r
n

Établir une récurrence sur les coefficients an et en déduire les
trois premiers termes non nuls de la série en partant de a0 = 1 et
a1 = 0, hypothèses qu’on justifiera.

5) On pose x = ωr
c . Montrer que si x � 1 on peut se contenter

des deux premiers termes de la série entière donnant E(r). Cette
approximation est-elle vérifiée avec a = 10 cm et f = 10 MHz
(limite supérieur d’un générateur de laboratoire usuel). À quel
concept renvoit la relation x� 1 ?
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5 Boule radioactive *
Donnée : pour un champ vectoriel de la forme ~a = a(r, t)−→er dans le
système des coordonnées sphériques :

div~a = 1
r2

∂

∂r

(
r2a(r, t)

)
Une boule de matière radioactive, de centre O et de rayon R, est

électriquement neutre à l’instant t = 0. À partir de cet instant initial,
elle émet depuis sa surface n positons β+ par unité de temps, chaque
positon ayant une charge élémentaire e. On suppose que l’émission est
isotrope, les charges émises ayant une même vitesse radiale ~v = v ~ur de
norme v constante.
1) a) En étudiant la charge électrique contenue à l’instant t > 0

dans une coquille sphérique limitée par les rayons r et r+ dr,
déterminer la densité volumique de charges ρ(r, t) en tout
point de l’espace situé à une distance r > R du centre de la
boule radioactive. Que se passe-t-il si r > R+ vt ?

b) Expliciter de même le vecteur densité de courant ~j en tout
point situé à une distance r > R.

2) Déterminer le champ électrique −→E (M, t) en tout point M tel que
r = OM > R. Que peut-on dire du champ magnétique −→B (M, t) ?

3) Quelle est la charge électrique Q(t) de la boule radioactive à l’ins-
tant t ? Retrouver ce résultat en appliquant le théorème de Gauss.
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