
MP1 Janson de Sailly Démonstration de cours

Une démonstration de l’identité remarquable div
Ä−→rot~a

ä
= 0

Soit ~a un champ vectoriel quelconque. Dans le système des coordonnées cartésiennes on
peut l’écrire :

~a = ax
−→ex + ay

−→ey + az
−→ez

où ax, ay et az sont des fonctions des trois coordonnées cartésiennes x, y, z et du temps t.

On a d’une part :
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Posons :
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D’autre part :
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c’est à dire :
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En utilisant le théorème de Schwarz :
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on constate que tous les termes du membre de droite de (1) s’annulent deux à deux, ce qui
permet d’affirmer que :
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