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1 Expérience de Stern et Gerlach
Données :

Masse molaire : M(Li) = 6,9 g.mol−1 ;
Constante d’Avogadro : NA = 6,02.1023 mol−1 ;
Masse de l’électron : me = 9,11.10−31 kg ;
Charge élémentaire : e = 1,60.10−19 C ;
Constante de Planck réduite : ~ = h/2π = 1,055.10−34 kg.m2.s−1.

Dans une enceinte, où règne une faible pression, est placé un four contenant du lithium
porté à la température T . Le lithium se vaporise et le gaz d’atomes obtenu se comporte comme
un gaz parfait monoatomique à la température T . Un ensemble d’ouvertures pratiquées dans
le four permet d’obtenir un jet d’atomes de lithium. On suppose que ce jet est monocinétique,
ce qui signifie que, à la sortie du four, les atomes ont tous la même énergie cinétique Ec =
1,6.10−20 J.

On supposera qu’en sortie du four −→v0 = v0
−→ex. Le poids des atomes de lithium est négligeable

dans toute cette expérience.
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lorsque ◊ varie entre le pôle Nord magnétique (◊ = 0) et le pôle
Sud magnétique (◊ = fi) ?

2 Expérience de Stern et Gerlach
Données :

masse molaire : M(Li) = 6,9 g.mol≠1 ;
NA = 6,02.1023 mol≠1 ;
masse de l’électron : me = 9,11.10≠31 kg ;
Charge élémentaire : e = 1,60.10≠19 C ;
Constante de Planck réduite : ~ = h

2fi
= 1,055.10≠34 kg.m2.s≠1

Dans une enceinte, où
règne une faible pression,
est placé un four conte-
nant du lithium porté à
la température T . Le li-
thium se vaporise et le
gaz d’atomes obtenu se
comporte comme un gaz
parfait monoatomique à
la température T . Un en-
semble d’ouvertures pratiquées dans le four permet d’obtenir un jet
d’atomes de lithium. On suppose que ce jet est monocinétique et donc
que les atomes ont tous la même énergie cinétique Ec = 1,6.10≠20 J.
On supposera qu’en sortie du four ≠æv0 = v0

≠æex. Le poids des atomes de
lithium est négligeable dans toute cette expérience.

1) Calculer v0.

En sortie du four, le jet d’atomes de lithium passe dans une région
ou règne un champ magnétique ≠æ

B = B(z) ≠æez tel que B(z) = az
où a est une constante positive (voir Figure). On admet que

cette région est de largeur ¸ et qu’en dehors de celle-ci le champ
magnétique est négligeable. On constate que le jet est dévié et
que son impact sur un écran situé à l’abcisse d = ¸ +D se situe
à une cote z0 non nulle. Cette déviation est explicable par le fait
que les atomes de lithium sont porteurs de moments dipolaires
magnétiques ≠æ

M constants et que dans la zone où règne le champ
magnétique, ils sont soumis à une force magnétique dérivant de
l’énergie potentielle Ep = ≠ ≠æ

M .≠æB .

2) Après avoir exprimé cette force, établir en fonction de a, Mz =≠æ
M .≠æez et de Ec la relation entre z et x décrivant la trajectoire d’un
atome dans la région où règne le champ magnétique linéaire.

3) Exprimer la cote z0 en fonction de D,¸, Ec, a et Mz.
4) On observe en fait sur l’écran deux taches symétriques par rap-

port à Ox. Que peut-on en déduire ?
5) On choisit Ec =1,6.10≠20 J, a = 10 T.m≠1, ¸ = 10 cm et D =

10 m et on observe z0 = ± 3 mm. Calculer les deux valeurs de la
composante Mz du moment magnétique des atomes de lithium.

Cette expérience réalisée par les physiciens OTTO STERN et
WALTHER GERLACH en 1921 a permis de mettre en évidence
la quantification du moment cinétique de spin des atomes étudiés
(et a valu le prix Nobel de physique à OTTO STERN en 1943).

6) On admet que le moment magnétique de l’atome de lithium est
dû à son unique électron de valence. Celui-ci possède un moment
cinétique interne ≠æ

S dit de "rotation propre" appelé spin et à ce
spin correspond un moment magnétique :

≠æ
M = ≠ 2, 000232 e

2me

≠æ
S

Déterminer les deux valeurs possibles de Sz que l’on exprimera
en unités de ~.
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1) Calculer v0.

En sortie du four, le jet d’atomes de lithium passe dans une région ou règne un champ
magnétique −→B = B(z)−→ez tel que B(z) = a z où a est une constante positive (voir Figure).
On admet que cette région est de largeur ` et qu’en dehors de celle-ci le champ magnétique
est négligeable. On constate que le jet est dévié et que son impact sur un écran situé à
l’abcisse d = `+D se situe à une cote z0 non nulle.

Cette déviation est explicable par le fait que les atomes de lithium sont porteurs de
moments dipolaires magnétiques −→M constants et que dans la zone où règne le champ
magnétique, ils sont soumis à une force magnétique dérivant de l’énergie potentielle
Ep = −−→M.

−→
B et telle que −→Fm = −−−→gradEp

2) Après avoir exprimé cette force, établir en fonction de a, Mz = −→M.−→ez et de Ec la rela-
tion entre z et x décrivant la trajectoire d’un atome dans la région où règne le champ
magnétique linéaire.

3) Exprimer la cote z0 en fonction de D, `, Ec, a et Mz.
4) On observe en fait sur l’écran deux taches symétriques par rapport à Ox. Que peut-on

en déduire ?
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5) On donne : Ec = 1,6.10−20 J, a = 10 T.m−1, ` = 10 cm et D = 10 m. On observe z0 = ±
3 mm. Calculer les deux valeurs de la composanteMz du moment magnétique des atomes
de lithium.

Cette expérience réalisée par les physiciens OTTO STERN et WALTHER GERLACH
en 1921 a permis de mettre en évidence la quantification du moment cinétique de spin
des atomes étudiés (et a valu le prix Nobel de physique à OTTO STERN en 1943).

6) On admet que le moment magnétique de l’atome de lithium est dû à son unique électron
de valence. Celui-ci possède un moment cinétique interne −→S dit de "rotation propre" et
appelé spin. À ce spin correspond un moment magnétique :

−→
M = − 2,000232 e

2me

−→
S

Déterminer les deux valeurs possibles de la composante Sz en posant Sz = α ~ : on
déterminera les deux valeurs numériques de α.

2 Mesure de la composante horizontale du champ magnétique
terrestre

Données : rayon terrestre RT = 6 400 km ; µ0 = 4.10−7 H.m−1

On admet que le champ magnétique terrestre −→B est assimilable au champ magnétique
d’un dipôle magnétique situé au centre C de la Terre, de moment magnétique −→mT = −mT

−→uz
(mT > 0).

z

•
y

x

•
M

r

ϕ

θ

−→mT

C

Un point M de l’espace est repéré par ses coordonnées sphériques (r, θ, ϕ) par rapport à
l’axe géomagnétique Cz. Les composantes de −→B en M s’écrivent :

−→
B = Br

−→er +Bθ
−→eθ +Bϕ

−→eϕ avec



Br = − µ0mT

4π
2 cos θ
r3

Bθ = − µ0mT

4π
sin θ
r3

Bϕ = 0

où (−→er ,−→eθ ,−→eϕ) sont les vecteurs unitaires de la base sphérique.

On se propose de déterminer, en un point M de coordonnées (RT , θ0, ϕ) situé à la surface
de la terre et à la colatitude θ0, l’intensité de la composante horizontale Bh = |Bθ| du champ
magnétique terrestre en mesurant les petites oscillations dans un plan horizontal d’une boussole.
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Celle-ci est un petit solide qui peut tourner sans frottement autour de son axe vertical ∆.
Elle est assimilable à un dipôle magnétique de moment magnétique −→mb et de moment d’inertie
J par rapport à son axe de rotation. On note α l’angle entre −→Bh et −→mb :

sol terrestre

−→er
−→eθ

−→
Bh

∆

−→mb

−→
Bh

α

•

−→er

1) Quelle est la position d’équilibre stable de la boussole dans le champ magnétique ter-
restre ? Justifier la réponse.

2) Établir l’équation différentielle du mouvement de l’aiguille soumise au champ magnétique
terrestre.

3) En déduire la période T0 des petites oscillations de cette aiguille en fonction de Bh, J et
de la norme mb du moment magnétique de la boussole.

4) Les valeurs de mb et J n’étant pas connues, on utilise le champ magnétique −→Be créé par
une bobine parcourue par un courant électrique pour s’en affranchir.

On place d’abord la bobine de sorte que −→Be et la composante horizontale du champ ter-
restre soient parallèles et de même sens et on mesure la période T1 des petites oscillations
de l’aiguille aimantée. On change ensuite le sens du courant dans la bobine et on mesure
la nouvelle valeur T2 de la période des petites oscillations.

En déduire Bh en fonction de l’intensité Be du champ magnétique créé par la bobine et
du rapport T1/T2 (on supposera Be < Bh).

5) Application numérique : en un point M situé à une colatitude θ0 = 50°, on a mesuré
Be = 6,0 µT et T1/T2 = 0,78. Calculer Bh.

6) En déduire le moment magnétique terrestre mT . Dans quel intervalle varie l’intensité du
champ magnétique terrestre ‖−→B‖ lorsque θ varie entre le pôle Nord magnétique et le pôle
Sud magnétique ?

3 Champ magnétique dans un supraconducteur
Les matériaux supraconducteurs ont des propriétés magnétiques intéressantes : en régime

stationnaire, ils "expulsent" le champ magnétique.

On admettra dans ce qui suit que la loi constitutive de certains supraconducteurs est −→rot−→j =
−Λ−→B où −→j et −→B sont respectivement la densité de courant et le champ magnétique en chaque
point du corps supraconducteur. Dans cette loi, Λ (prononcer "lambda") est une constante
positive.

1. Quelle est l’unité de Λ ?
2. En supposant qu’on peut appliquer les équations de Maxwell dans le matériau supracon-

ducteur de perméabilité µ0 et de permittivité ε0, exprimer grâce à une formule d’analyse
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vectorielle l’équation du second ordre à laquelle obéit le champ magnétique −→B (M) en
régime permanent. La mettre sous la forme :

∆−→B −
−→
B

δ2 = −→0

Quelle est la dimension de la grandeur δ ?

On considère qu’un supraconducteur de ce type occupe le demi-espace x < 0 et que les
sources du champ sont telles que règne dans l’espace extérieur x > 0 un champ permanent
uniforme −→B0 = B0

−→ez . La modélisation de la distribution de courant est volumique et
n’introduit donc pas de discontinuités spatiales du champ magnétique.

3. En utilisant les invariances du problème, montrer que le champ dans le supraconducteur
s’écrit sous la forme :

−→
B (M) = Bx(x)−→ex +By(x)−→ey +Bz(x)−→ez

4. Déterminer l’expression de ce champ −→B (M) régnant dans le supraconducteur en fonction
de x, δ et B0. En déduire la densité de courant −→j .

5. L’ordre de grandeur du paramètre δ est de 5.10−8 m. Commenter.
6. Tracer sans faire de calculs l’allure de Bz(r) dans une symétrie cylindrique où le supracon-

ducteur occupe le volume d’un cylindre creux d’épaisseur e = R2 −R1 � δ, de longueur
L très grande devant son rayon R2. On suppose que le champ vaut −→B0 = B0

−→ez dans
l’espace intérieur au cylindre creux.
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