
MP Janson de Sailly Corrigé du DS n°4 - Électromagnétisme

Corrigé du DS n°4

I. Séparation des isotopes par spectrométrie
de masse. Centrale TSI 2012

A - Accélération des ions

A1) Pour que les ions positifs soient accélérés, il faut que le champ
électrostatique soit dirigé de G1 vers G2. Or −→E est dans le sens des
potentiels décroissants. On en déduit que :

VG1 > VG2 d’où VG1 − VG2 > 0

G1 G2

−→
E

A2) L’énergie mécanique d’un ion est constante au cours du temps :

Em (O1) = Em (O2) d’où 0 + eVG1 = 1
2mu

2 + eVG2

ce qui entraîne pour chaque type d’ions :

u1 =
√

2eU
m1

et u2 =
√

2eU
m2

avec m1 = M1/NA et m2 = M2/NA, M1 et M2 étant les masses
molaires des deux types d’ions, c’est à dire M1 = 235 g.mol−1 pour
235
92 U+ et M2 = 238 g.mol−1 pour 238

92 U+.

A3) L’énergie cinétique acquise par les ions s’écrit :

Ec = 1
2mu

2 = eU = 15,0 keV d’où U = 15 kV

On en déduit que, après calcul des masses m1 et m2 :

u1 = 111 km/s et u1 = 110 km/s

B - Déviation des ions

B1) Lorsqu’un ion positif pénètre dans la chambre de déviation, il
est soumis à la force de Lorentz −→F = e−→u ∧

−→
B . Cette force doit être

dirigée vers la fente F , d’où le sens de −→B sur le schéma : −→B = B−→ez
avec B > 0.

−→u

−→
F

• −→B−→ey•

−→ex

−→ez

F

B2) On applique le principe fondamental de la dynamique (PFD) à
un ion de charge e et de masse m. En négligeant les autres forces que
la force magnétique on a :

m
d~v
dt = e~v ∧

−→
B
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À la sortie de la chambre d’accélération (temps t = 0), le vecteur
vitesse de l’ion est dans le plan de la figure et ~v = u−→ey . Pour t > 0
on a :

~v = vx
−→ex + vy

−→ey + vz
−→ez

En projection sur (−→ex,−→ey ,−→ez ) :

m
dvx
dt = eB vy ; m

dvy
dt = −eB vx et m

dvz
dt = 0

On a donc vz = Cste = 0 d’où z = Cste = 0 (d’après conditions
initiales) : le mouvement est plan, dans le plan O2xy (= plan de la
figure).

Posons ωc = eB/m (pulsation cyclotron) et v = vx + ivy (vitesse
complexe). On obtient l’équation :

dv
dt = − iωc v =⇒ v(t) = v(0) e−iωct = iu e−iωct

Il vient :

vx(t) = Re[ v(t) ] = u sin(ωct) et vy(t) = Im[ v ] = u cos(ωct)

puis :

x(t) = − u

ωc
cos(ωct) + C1 et y(t) = u

ωc
sin(ωct) + C2

Les conditions initiales donnent : C1 = u/ωc et C2 = 0, d’où :

x(t) = u

ωc
(1− cos(ωct)) et y(t) = u

ωc
sin(ωct)

L’élimination du temps conduit à :

(
x− u

ωc

)2
+ y2 =

(
u

ωc

)2

ce qui est l’équation d’un cercle de centre Ω =
(
u

ωc
, 0
)

et de rayon

R = u

ωc
= mu

eB
. On a donc pour les deux types d’ions :

R1 = m1u1
eB

= 1
B

√
2Um1
e

et R2 = m2u2
eB

= 1
B

√
2Um2
e

B3) Les ions de l’uranium 235 passent par F si et seulement si 2R1 =
D ce qui conduit à :

B = 2
D

√
2Um1
e

AN= 0,576 T

ce qui est un ordre de grandeur raisonnable pour B, facilement attei-
gnable en laboratoire.

B4) Pour le champ magnétique trouvé à la question précédente on
a : 2R2 = 946 mm > D+L′. Les ions de l’isotope 238 ne passent pas
par la fente F . Il y a bien séparation isotopique.

B5) Charge électrique passant dans le dispositif en un an : Q = It
avec t = 365,25×24×3600 secondes donc Q = 3,156.106 C.

Nombre d’ions : N = Q
e = 1,972.1025

Le nombre d’ions 235
92 U+ est donc 0,7.10−2 ×N = 1,380.1023 ce qui

correspond à 0,229 mol, soit une masse de 53,9 grammes. Ceci n’est
pas beaucoup !

2



MP Janson de Sailly Corrigé du DS n°4 - Électromagnétisme

II. Résonance magnétique nucléaire CCINP
MP 2017

I. Rapports gyromagnétiques
Q1. Le contour définissant la spire étant orienté, le vecteur surface

obéit à la règle de la main droite :
−→
S = πR2−→ez

Le moment magnétique de la spire est le produit de −→S par
l’intensité I du courant qui traverse la spire.

−→m = I
−→
S = I πR2−→ez

I

O

z

Q2. a) Le mouvement étant circulaire (r = Cste), le vecteur vitesse
s’écrit en coordonnées polaires −→v = rθ̇−→eθ . La puissance de
la force −→Fél est donc nulle puisque :

−→
Fél.
−→v = 0

D’après le théorème de la puissance cinétique :

dEc
dt = −→Fél.−→v = 0

ce qui montre que l’énergie cinétique est conservée et donc
que la norme de la vitesse est une constante.

b) En assimilant la trajectoire de l’électron à un boucle de cou-
rant microscopique parcourue par un courant I = − e/T
(voir cours), on peut associer à l’électron un moment ma-
gnétique :

−→m = − e

T
πr2

B
−→ez

Comme la norme de la vitesse est constante, on peut écrire
que la circonférence du cercle vérifie l’équation :

2πrB =
∫ T

0
v dt = vT donc v = 2πrB

T

d’où :
−→m = − e

2 v rB
−→ez

c) Par définition du moment cinétique :
−→
LO = −−→OM ∧me

−→v = merBv
−→er ∧ −→eθ = merBv

−→ez

d) On en déduit que :

−→m = − e

2me

−→
LO = γe

−→
LO

et donc que :
γe = − e

2me

Application numérique : γe =− 8,8.1010 C.kg−1.
Q3. Décomposons la boule en porteuse d’une charge totale q en pe-

tites charges élémentaires dq. Lorsque la boule est en rotation au-
tour d’un diamètre OZ, chaque charge dq décrit un cercle autour
de OZ et crée un moment magnétique dirigé dans la direction du
vecteur −→ez si dq > 0 et −−→ez si dq < 0. Si on considère que le mo-
ment magnétique total −→m de la boule est la somme des moments
magnétiques de chaque charge dq, alors −→m sera colinéaire à −→ez .
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Q4. Nous obtenons : ‖−→m‖ = γp ~/2. Application numérique : ‖−→m‖ =
1,4.10−26 A.m2.

II. Dipôles magnétiques
Q5. Il s’agit d’un système physique caractérisé par un moment ma-

gnétique −→m non nul et dont la taille caractéristique ` est très
petite devant la distance où on observe son champ magnétique
créé

Q6. Rappelons que lorsque le champ magnétique d’origine extérieure−→
B0 est uniforme, la résultante des forces magnétiques exercées
sur le dipôle est nulle : il ne reste que le moment résultant de ces
forces (couple).
Les positions d’équilibre correspondent à −→Γ = −→0 , c’est à dire à
−→m dans le même sens que −→B0 où −→m en sens opposé à −→B0. Dans le
premier cas l’énergie potentielle vaut Ep(1) = −‖−→m‖B0 et dans
l’autre cas elle vaut Ep(2) = + ‖−→m‖B0.
La position d’équilibre stable correspond à la plus petite valeur

de Ep : c’est donc la première configuration.
Q7. La différence d’énergie vaut : ∆Ep = 2 ‖−→m‖B0.

Application numérique : ∆Ep = 2,8.10−26 J = 1,7.10−7 eV
(on rappelle qu’un eV est égal à 1,6.10−19 J).

C’est une très petite énergie comparée à celle des électrons dans
les atomes par exemple qui est de l’ordre de quelques eV ou à celle
des interactions (fortes) entre les nucléons du noyau atomique qui
est de l’ordre de quelques centaines de Mev (méga électron-volts).

Précession d’un dipôle magnétique.
Q8. En supposant que les seules forces qui agissent sont les forces

magnétiques, nous avons (TMC) :

d−→S
dt = −→Γ = −→m ∧ −→B0

En multipliant cette équation par γp, il vient :

d−→m
dt = − γp

−→
B0 ∧ −→m (1)

d’où :
−→ω0 = − γp

−→
B0

Du point de vue des dimensions, ω0 est homogène à l’inverse
d’un temps : il s’agit d’une pulsation, appelée pulsation de pré-
cession ou encore pulsation de Larmor.

Q9. Considérons le produit scalaire de l’équation précédente par −→m.
Nous obtenons :

−→m.d
−→m
dt = −→m.

(−→m ∧ −→B0
)

= 0

et comme :
−→m.d
−→m
dt = 1

2
(d−→m.−→m)

dt = 1
2

d‖−→m‖2

dt
il vient :

d‖−→m‖2

dt = 0 ⇐⇒ ‖−→m‖ = Cste

Considérons maintenant le produit scalaire de l’équation pré-
cédente par −→ez . Puisque

−→
B0 = B0

−→ez et que −→ez est un vecteur
constant, il vient :

−→ez .
d−→m
dt = d(−→ez .−→m)

dt = −→ez .
(−→m ∧ −→B0

)
= 0

et donc :
−→ez .−→m = mz = Cste

En utilisant les deux expressions équivalentes du produit sca-
laire, on en déduit que :

−→m.
−→
B0 = mzB0 = ‖−→m‖B0 cosα = Cste

4



MP Janson de Sailly Corrigé du DS n°4 - Électromagnétisme

ce qui montre que cosα reste constant au cours du mouvement et
donc que α reste constant. Ceci montre que le vecteur −→m décrit
un cône de demi-angle au sommet α.

Q10. a) Projetons l’équation (1) sur la base cartésienne (−→ex,−→ey ,−→ez ).
Nous obtenons : {

ṁx = γpB0my

ṁy = − γpB0mx

En dérivant la première équation par rapport au temps et
en y remplaçant ṁy, il vient :

m̈x = γpB0 ṁy = − (γpB0)2mx

Par la suite, nous poserons : ω0 = ‖−→ω0 ‖ = γpB0 > 0. On
obtient alors :

m̈x + ω0
2mx = 0

ce qui est l’équation d’un oscillateur harmonique de pulsa-
tion propre ω0. Une équation similaire est vérifiée par my.

b) Nous avons :

mx(t) = λ cos(ω0t) + µ sin(ω0t)

En observant la configuration du moment magnétique à
t = 0, on voit que mx(0) = m0 sinα et que ṁx(0) =
ω0my(0) = 0. On en déduit que λ = m0 sinα et µ = 0
et donc :

mx(t) = m0 sinα cos(ω0t)

puis :

ṁy = − γpB0mx = −ω0m0 sinα cos(ω0t)
=⇒ my(t) = −m0 sinα sin(ω0t) + Cste

Comme my(0) = 0, la constante d’intégration est nulle et
nous obtenons :

my(t) = −m0 sinα sin(ω0t)

c) On a :
mx

2 +my
2 = (m0 sinα)2

ce qui montre que l’extrémité du vecteur −→m⊥ décrit un cercle
de rayon m0 sinα. La vitesse angulaire de parcours de ce
cercle est ω0.
À l’instant t = 0, −→m⊥(0) = m0 sinα−→ex et à l’instant t1 > 0

tel que ω0t1 = π/2, −→m⊥(t1) = −m0 sinα−→ey . On voit donc
que le sens de parcours est le sens horaire.

y

x
−→m⊥(0)

−→m⊥(t1)

O

III. La relaxation de l’aimantation

Q11. On suppose pour simplifier l’étude qu’à l’instant t = 0, juste
après l’impulsion radiofréquence, l’aimantation vaut −→M(t = 0) =
−M0

−→ey .
a) Le document 2 donne l’équation à projeter. On obtient :

dMz

dt = −MZ −M0
T1

⇐⇒ dMz

dt + MZ

T1
= M0

T1

b) La solution est :Mz(t) = A exp(−t/T1)+M0, avecMz(0) =
0, ce qui conduit à :

Mz(t) = M0

[
1− exp

(
− t

T1

)]
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Q12. Obtention de −−→M⊥ :
a) La projection de l’équation du document 2 sur un plan or-

thogonal à −→ez conduit à :

d−−→M⊥
dt = −→ω0 ∧

−−→
M⊥ −

−−→
M⊥
T2

b) Nous obtenons :

d−→M1
dt = d−−→M⊥

dt et/T2 +
−−→
M⊥
T2

et/T2

= −→ω0 ∧
−−→
M⊥ e

t/T2 −
−−→
M⊥
T2

et/T2 +
−−→
M⊥
T2

et/T2

= −→ω0 ∧
−→
M1

ce qui est le résultat demandé par l’énoncé.
c) Il s’agit de la même équation différentielle que celle qui était

vérifiée à la question Q8. par −→m. On en déduit les deux
équations couplées :{

Ṁ1x = −ω0M1y
Ṁ1y = ω0M1x

ce qui conduit à :

M̈1y = −ω2
0 M1y

et donc à :

M1y(t) = λ cos(ω0t) + µ sin(ω0t)

avec : M1y(0) = −M0 et Ṁ1y(0) = ω0M1x(0) = 0 et donc :

M1y(t) = −M0 cos(ω0t)

et

Ṁ1x = −ω0M1y = M0 cos(ω0t) =⇒ M1x(t) = M0 sin(ω0t)

et, finalement :
−−→
M⊥(t) = −→M1e

−t/T2 = −M0 e
−t/T2 [− sin(ω0t)−→ex + cos(ω0t)−→ey ]

La norme de ce vecteur est donc : M⊥(t) = M0 e
−t/T2 ,

ce qui donne une décroissance exponentielle, avec une
constante de temps T2, conforme à l’allure donnée sur le
document 1.

IV. La RMN pulsée

Q13. Tout d’abord, ‖−→B1‖ = B1 = Cste. Ensuite, si on représente −→B1 à
t = 0, puis à t1 tel que ωt1 = π/2, nous obtenons :

y

x
−→
B1(0)

−→
B1(t1)

O

Ainsi, l’extrémité de −→B1 décrit un cercle de rayon B1 dans le
sens horaire.

Q14. Négliger les phénomènes de relaxation revient à faire T1 → +∞
et T2 → +∞ dans les équations de Bloch. Le champ magnétique
vu par le dipôle étant maintenant −→B0 +−→B1, il vient :

d−→M
dt = −→ω0 ∧

−→
M +−→ω1 ∧

−→
M

avec −→ω0 = − γpB0
−→ez = −ω0

−→ez et −→ω1 = − γp
−→
B1 = −ω1

−→e1 .

6



MP Janson de Sailly Corrigé du DS n°4 - Électromagnétisme

Q15. Il s’agit d’une rotation de repère dans le sens horaire, ce qui
donne :

−→ω (R1/R0) = −ω−→ez

Q16. Utilisons la loi de dérivation vectorielle :(
d
−→
M

dt

)
R0

=
(
d
−→
M

dt

)
R1

+−→ω (R1/R0)∧−→M =
(
d
−→
M

dt

)
R1

−ω−→ez ∧
−→
M

et, d’autre part :(
d
−→
M

dt

)
R0

= −ω0
−→ez ∧

−→
M − ω1

−→e1 ∧
−→
M

En regroupant les deux expressions, nous obtenons :(
d
−→
M

dt

)
R1

= (ω − ω0)−→ez ∧
−→
M − ω1

−→e1 ∧
−→
M

= −→M ∧ [ (ω0 − ω)−→ez + ω1
−→e1 ]

d’où :

−−→
Beff = ω0 − ω

γp

−→ez + ω1
γp

−→e1 =
(
B0 −

ω

γp

)
−→ez +B1

−→e1

qui est bien homogène à un champ magnétique. Ce champ "effec-
tif" est représenté sur le figure ci-dessous, dans le cas où ω0 > ω :

−→ez
−→e1

−−→
Beff

Q17. Dans le référentiel tournant, nous sommes ramenés à la situation
des questions 9., 10. et 11. Le vecteur aimantation va avoir un
mouvement de précession autour de l’axe défini par le champ
magnétique effectif −−→Beff.

Q18. Si on tient compte des temps de relaxation T1 et T2, ce mouve-
ment de précession va s’amortir. Le vecteur aimantation va venir
s’aligner selon l’axe défini par le champ magnétique effectif −−→Beff,
avec une constante de temps T1, tandis que les composantes de−→
M orthogonales à cet axe vont tendre vers 0 avec une constante
de temps T2.

Comme, selon le document 3, la norme de −→M est conservée au
cours de ce basculement, le vecteur −→M va finir par s’aligner selon
l’axe de −−→Beff, avec une norme égale à M0.

Q19. Il faut faire varier la direction de l’axe de −−→Beff en agissant sur
la vitesse angulaire ω du champ tournant et en attendant un
temps T > max(T1, T2) pour que −→M ait le temps de s’aligner
sur cet axe. Ainsi, pour faire basculer −→M dans le plan Oxy, il est
nécessaire que ω = ω0.

A.N. : ω = ω0 = 2,67.108 rad.s−1 et donc f = ω/2π = 42,5 MHz,
ce qui correspond à des ondes radiofréquence.

On appelle ce phénomène "résonance" parce que ce basculement
se produit pour une fréquence caractéristique f0 du système.

Q20. Il faut que t1 > max(T1, T2) (déjà répondu à la question précé-
dente). D’après le document 3, T1 > T2 pour les tissus étudiés et
donc il faut que t1 > T1 qui varie de 0,2 s à 3 s et qui dépend de
l’intensité de B0.

7
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III. Magnétorésistance. Mines-Pont PSI 2016
1) Le probème est invariant par toute rotation autour de l’axe Oz

et par toute translation le long de l’axe Oz puisqu’on néglige les
effets de bord. On a donc V = V (r)

2) On a :
div−→E = ρ

ε0
= 0 et −→E = −−−→gradV

ce qui implique :

div
(−−→gradV

)
= ∆V = 0

qui est l’équation de Laplace. On en déduit que :

d
dr

(
r

dV
dr

)
= 0 donc r

dV
dr = C d’où V (r) = C ln(r) + C ′

où C et C ′ sont deux constantes. Les conditions aux limites im-
posent : {

V (r1) = = C ln(r1) + C ′ = V1
V (r2) = = C ln(r2) + C ′ = V2

On résout pour en déduire que :

C = V1 − V2
ln(r1/r2) et C ′ = V1 −

V1 − V2
ln(r1/r2) ln(r1)

Il s’ensuit que :

−→
E = −−−→gradV = − dV

dr
−→er = − C

r
−→er = V1 − V2

ln(r2/r1)

−→er
r

3) Un électron de conduction dans le volume dτ , assimilé à une
charge ponctuelle Mi de vecteur vitesse −→vi , est soumis à :

• La force électrique −e−→E (Mi)
• La force magnétique −e−→vi ∧

−→
B

• La force de frottement −λ−→vi
Le principe fondamental de la dynamique (PFD) donne :

me
d−→vi
dt = −e−→E (Mi)− e−→vi ∧

−→
B − λ−→vi

En sommant sur les δN électrons de conduction contenus dans
dτ on obtient :

me

δN∑
i=1

d−→vi
dt = −e

δN∑
i=1

−→
E (Mi)− e

δN∑
i=1

−→vi ∧
−→
B − λ

δN∑
i=1

−→vi

En supposant que le champ électrostatique varie peu à l’échelle
de l’élément de volume dτ on peut l’assimiler à sa valeur en M
situé sur un sommet du petit parallélépipède formant le volume
dτ (et à la distance r de l’axe Oz). D’autre part, en permutant la
somme et la dérivation dans le membre de gauche et en utilisant
le fait que −→B est uniforme, on obtient :

me
d
dt

(
δN∑
i=1

−→vi

)
= −e δN −→E (M)− e

(
δN∑
i=1

−→vi

)
∧
−→
B − λ

δN∑
i=1

−→vi

On introduit ensuite la vitesse de dérive −→ve(M, t) des électrons
de conduction en M et à l’instant t. Par définition, c’est la
moyenne arithmétique :

−→ve(M, t) déf= 1
δN

(
δN∑
i=1

−→vi

)

On obtient alors :

me
∂ (δN−→ve(M, t))

∂t
= −e δN −→E (M)−e δN −→ve(M, t)∧−→B−λ δN −→ve(M, t)

8
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Enfin, comme δN = n dτ , que l’élément de volume dτ reste fixe
et que le vecteur densité de courant est donné par :

~j(M, t) = −en−→ve(M, t)

(les électrons de conduction sont les seuls PCM puisque les ions
sont fixes dans le référentiel d’étude), il vient (tous les champs
vectoriels étant évalués au point M et à l’instant t) :

− me

e

∂~j

∂t
dτ = −en−→E dτ +~j ∧

−→
B dτ + λ

e
~j dτ

En simplifiant dτ , on aboutit à :

∂~j

∂t
(M, t) = ne2

me

−→
E (M)− e

me

~j(M, t) ∧ −→B − λ

me

~j(M, t)

ce qui est bien l’équation demandée.
4) En régime stationnaire on a ∂~j/∂t = −→0 , ce qui conduit à :

−→
j (M) + e

λ

−→
j (M) ∧ −→B = ne2

λ

−→
E (M)

Comme le point M est à la distance r de Oz et qu’on suppose
l’invariance des courants par toute translation de direction Oz et
par toute rotation d’axe Oz, on pose :
−→
j (M) = jr(r)−→er + jθ(r)−→eθ + jz(r)−→ez et −→E (M) = E(r)−→er

5) L’équation précédente peut être explicitée sur la base cylindrique
(−→er ,−→eθ ,−→ez ). On obtient :jrjθ

jz

+ e

λ

 B jθ
−B jr

0

 = ne2

λ

E(r)
0
0



d’où le système :
jr + (eB/λ) jθ = (ne2/λ)E(r)
jθ − (eB/λ) jr = 0
jz = 0

On résout pour trouver :

jr = ne2

λ

E(r)
1 + e2B2

λ2

; jθ = eB

λ

ne2

λ

E(r)
1 + e2B2

λ2

et jz = 0

6) L’équipotentielle est la surface cylindrique de rayon r et de hau-
teur h. On a donc, avec −→dS = rdθdz−→er :

I =
∫∫

S

−→
j (M).−→dS =

∫ 2π

θ=0

∫ z0+h

z=z0
jr rdθdz = ne2

λ

E(r)
1 + e2B2

λ2

2πr h

En remplaçant E(r) par son expression on obtient :

I = 2πh ne2

λ

V1 − V2
ln(r2/r2)

1
1 + e2B2

λ2

d’où :

R = V1 − V2
I

= λ

2πhne2 ln(r2/r1)
(

1 + e2B2

λ2

)

Si on note R0 la résistance en l’absence de champ magnétique
alors :

R0 = λ

2πhne2 ln(r2/r1)

On remarque alors que :

R = R0

(
1 + e2B2

λ2

)
=⇒ ε = e2B2

λ2
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A.N. : R0 = 110 Ω et ε = 7,9.10−11

Cette variation relative de résistance est vraiment très faible et
probablement très difficile à déceler.
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