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’ Corrigé du DS n°4 ‘

I. Séparation des isotopes par spectrométrie
de masse. Centrale TSI 2012

A - Accélération des ions

A1) Pour que les ions positifs soient accélérés, il faut que le champ

électrostatique soit dirigé de G vers Ga. Or E est dans le sens des
potentiels décroissants. On en déduit que :

Vo, > Vg, dot |V, — Ve, > 0|

B

 ———

G Go

A2) L’énergie mécanique d’un ion est constante au cours du temps :
PR 1 2
E,, (01) = E, (0O2) dou 04 eVg, = gmu + eV,

ce qui entralne pour chaque type d’ions :

[2eU [2eU
Uy =4 —— et uy =4/ ——
my ma

avec mp = M/Ny et mg = Mao/Ny, My et My étant les masses
molaires des deux types d’ions, c’est & dire M; = 235 g.mol~! pour
335U et My = 238 g.mol™! pour 33°UT.

A3) L’énergie cinétique acquise par les ions s’écrit :

1
E. = 5mu2 =eU =15,0keV dou |U=15kV

On en déduit que, apres calcul des masses m; et mo :

‘ul =111 km/s et wu; =110 km/s‘

B - Déviation des ions

B1) Lorsqu’un ion positif pénétre dans la chambre de déviation, il
est soumis a la force de Lorentz ? —ed A § Cette force doit étre

dirigée vers la fente F', d’ou le sens de ﬁ sur le schéma : B = Be,
avec B > 0.
0
e

B2) On applique le principe fondamental de la dynamique (PFD) a
un ion de charge e et de masse m. En négligeant les autres forces que
la force magnétique on a :

m@:eﬁ/\g
dt
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A la sortie de la chambre d’accélération (temps t = 0), le vecteur
vitesse de l'ion est dans le plan de la figure et v = ue_y>. Pourt > 0
on a :

dv dv dv
m—w:ery : m—2L =—eBu, et =

dt P

=0

On a donc v, = Cste = 0 d’ou z = Cste = 0 (d’apres conditions
initiales) : le mouvement est plan, dans le plan Oxzy (= plan de la
figure).

Posons w. = eB/m (pulsation cyclotron) et v = v, + v, (vitesse
complexe). On obtient ’équation :

- = —iwey = u(t) =2(0) e el — g gmtwet
Il vient :

vz(t) = Re[v(t)] = usin(wct) et vy(t) =Im[v] = ucos(wet)
puis :

2(t) = — = cos(wet) + C1 et y(t) = — sin(wet) + Cs

We We

Les conditions initiales donnent : C1 = u/w, et Cy = 0, d’ou :

x(t) = wﬂc (1 —cos(wet)) et y(t) = a% sin(wet)

L’élimination du temps conduit & :

(-5) +=(5)
r— — +y = —
We We

U
ce qui est ’équation d’un cercle de centre €2 = (, 0) et de rayon
We
U mu
R = — = —. 0On a donc pour les deux types d’ions :
We eB

_mlul_ 1 2Um1 _m2u2_ 1 QUWLQ
= eB _B\/ e ot 2= eB _B\/ e

B3) Les ions de 'uranium 235 passent par F' si et seulement si 2R; =

D ce qui conduit a :
2 /2
B== Umi AN 576 T
D e

ce qui est un ordre de grandeur raisonnable pour B, facilement attei-
gnable en laboratoire.

B4) Pour le champ magnétique trouvé a la question précédente on
a: 2Ry =946 mm > D+ L. Les ions de 'isotope 238 ne passent pas
par la fente F. Il y a bien séparation isotopique.

B5) Charge électrique passant dans le dispositif en un an : Q = It
avec t = 365,25x24 %3600 secondes donc Q = 3,156.106 C.

Nombre d’ions : N = % = 1,972.10%°
Le nombre d’ions 33°U* est donc 0,7.1072 x N = 1,380.10% ce qui
correspond a 0,229 mol, soit une masse de 53,9 grammes. Ceci n’est

pas beaucoup !
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II. Résonance magnétique nucléaire CCINP
MP 2017

I. Rapports gyromagnétiques

Q1. Le contour définissant la spire étant orienté, le vecteur surface
obéit a la regle de la main droite :

?:WR26_;

Le moment magnétique de la spire est le produit de ? par
I'intensité I du courant qui traverse la spire.

Wm=IS =IrR%E

z

Q2. a) Le mouvement étant circulaire (r = Cste), le vecteur vitesse
s’écrit erizoordonnées polaires ¥ =rle. La puissance de
la force Fy est donc nulle puisque :

H
Fg. W =0
D’apres le théoréme de la puissance cinétique :

= L'él-
dt
ce qui montre que I’énergie cinétique est conservée et donc
que la norme de la vitesse est une constante.

dE,
oW =0

b) En assimilant la trajectoire de I’électron a un boucle de cou-
rant microscopique parcourue par un courant [ = —e/T
(voir cours), on peut associer a I’électron un moment ma-
gnétique :

€ _ 2=
m:—ferez

Comme la norme de la vitesse est constante, on peut écrire
que la circonférence du cercle vérifie I’équation :

2nrg
T

T
27rrB:/ vdt =vT donc v =
0

d’ou :

e
R,

¢) Par définition du moment cinétique :
- =
Lo=0M AN\ m67 = meere_,,> A e_g = meere_z>

d) On en déduit que :

e — =
mz*Zm Lo =7eLo
e
et donc que :
B e
Yo =g

Application numérique : v, =— 8,8.10'0 C.kg™!.

Q3. Décomposons la boule en porteuse d’'une charge totale g en pe-
tites charges élémentaires dg. Lorsque la boule est en rotation au-
tour d’un diametre OZ, chaque charge dg décrit un cercle autour
de OZ et crée un moment magnétique dirigé dans la direction du

vecteur e si dg >0et — er si dg < 0. Si on considere que le mo-

ment magnétique total 7t de la boule est la somme des moments

magnétiques de chaque charge dg, alors 7 sera colinéaire A €.
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Q4.

Nous obtenons : ||71F|| = v, /2. Application numérique : ||771|| =
1,4.10726 A.m?.

I1. Dipoles magnétiques

Q5.

Q6.

Q7.

Qs.

Il s’agit d’un systéme physique caractérisé par un moment ma-
gnétique 7 non nul et dont la taille caractéristique ¢ est tros
petite devant la distance ou on observe son champ magnétique
créé

Rappelons que lorsque le champ magnétique d’origine extérieure
By est uniforme, la résultante des forces magnétiques exercées
sur le dipdle est nulle : il ne reste que le moment résultant de ces
forces (couple).

Les positions d’équilibre correspondent a ? = 6>, c’est a dire a
7 dans le méme sens que By ou 7% en sens opposé a By. Dans le
premier cas I'énergie potentielle vaut E,(1) = — ||| By et dans
Pautre cas elle vaut E,(2) = + ||7t|| Bo.

La position d’équilibre stable correspond & la plus petite valeur
de E), : c’est donc la premiére configuration.

La différence d’énergie vaut AE, =
Application numérique : AE, = 2,8.107%6 J =

2 ||mt|| Bo.
1,7.1077 eV

(on rappelle qu'un eV est égal & 1,6.10719 J).

C’est une tres petite énergie comparée a celle des électrons dans
les atomes par exemple qui est de I’ordre de quelques €V ou a celle
des interactions (fortes) entre les nucléons du noyau atomique qui
est de l'ordre de quelques centaines de Mev (méga électron-volts).

Précession d’un dip6le magnétique.

En supposant que les seules forces qui agissent sont les forces
magnétiques, nous avons (TMC) :

d? —
4 T _mAB

Qo.

En multipliant cette équation par -, il vient :

dm

—

d’ou :

N =
wo = —Bo

Du point de vue des dimensions, wy est homogene a l'inverse
d’un temps : il s’agit d’une pulsation, appelée pulsation de pré-
cession ou encore pulsation de Larmor.

Considérons le produit scalaire de I’équation précédente par m.
Nous obtenons :

dmt —
et comme :
dimi _ 1 (dmi) _ 1d||mt)?
At 2 dt 2 dt
il vient :
2
d]dth =0 <= |ni| = Cste

Considérons maintenant le produit scalaire de 1’équation pré-
cédente par er. Puisque By = Boe_z> et que € est un vecteur
constant, il vient :

%
2 M _dE 2 (@A) -0

et donc :

‘e_gm =m, = Cste‘

En utilisant les deux expressions équivalentes du produit sca-
laire, on en déduit que :

m.ﬁg = m.By = ||| By cos a = Cste
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ce qui montre que cos « reste constant au cours du mouvement et
donc que « reste constant. Ceci montre que le vecteur 7 décrit

un cone de demi-angle au sommet a.
Q10. a) Projetons ’équation (1) sur la base cartésienne (ez, &5, €3).
Nous obtenons :

mg = 'YpBOmy
my = —ypBomy

En dérivant la premiére équation par rapport au temps et
en y remplacant 7, il vient :
. . 2
1y = YpBo iy = — (vpBo)” my

Par la suite, nous poserons : wy = || % || = ~vpBo > 0. On
obtient alors :

mx+w02mx:O‘

ce qui est I’équation d’un oscillateur harmonique de pulsa-
tion propre wp. Une équation similaire est vérifiée par m,.

b) Nous avons :
mg(t) = A cos(wot) + psin(wot)

En observant la configuration du moment magnétique a

t = 0, on voit que mz(0) = mosina et que 1h,(0) =
womy(0) = 0. On en déduit que A\ = mosina et p = 0
et donc :
‘mx(t) = my sin a cos(wot) ‘
puis :
My = — YpBomg = —womg sin o cos(wot)
= my(t) = —mpsina sin(wot) + Cste

Comme m,(0) = 0, la constante d’intégration est nulle et
nous obtenons :

my(t) = —mg sin « sin(wot)

c) On a:
my? +my? = (mgsin a)?
ce qui montre que I'extrémité du vecteur m décrit un cercle
de rayon mgsina. La vitesse angulaire de parcours de ce
cercle est wyg.

A Vinstant ¢ = 0, in/ (0) = mosina e, et a instant ¢; > 0

tel que wot; = 7/2, an(tl) = —my sina?y. On voit donc
que le sens de parcours est le sens horaire.
Yy
11 (0) T
(@)
m(t)

ITI. La relaxation de I’aimantation

Q11. On suppose pour simplifier I’étude qu’a l'instant ¢ = 0, juste
apres l'impulsion radiofréquence, 'aimantation vaut M (t = 0) =
— Mye,.
a) Le document 2 donne ’équation & projeter. On obtient :

dM, Mz — M dM; Mz My

T

—
dt Ty dt

b) La solution est : M,(t) = Aexp(—t/T1)+ My, avec M,(0) =
0, ce qui conduit & :

M. (t) = My {1 — exp (II;) ]
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—
Q12. Obtention de M :

a) La projection de I’équation du document 2 sur un plan or-

thogonal a e conduit A :

— —
dMJ_ G MJ_
w
dt 0 T

b) Nous obtenons :

— —
L _ Ay T,
dt dt T
— —
e - MLy MLy,
., 2 T
= o A My

ce qui est le résultat demandé par I’énoncé.

c) Il s’agit de la méme équation différentielle que celle qui était
vérifiée & la question Q8. par . On en déduit les deux
équations couplées :

{ Mlz = —woMyy
My, = woMi,
ce qui conduit & :
Mly = — w% My,
et donc a :
Miy(t) = Acos(wot) + psin(wot)
avec : My, (0) = — My et My, (0) = wo My,(0) = 0 et donc :

M1y(t) = — Mo COS(th)

et

My = —wo My, = Mycos(wot) == M, (t) = Mysin(wot)
et, finalement :

M (1) = Mie ¥ = — Mye /T2 | — sin(wot) & + cos(wot) & ]

La norme de ce vecteur est donc : M (t) = Mye ¥/,
ce qui donne une décroissance exponentielle, avec une
constante de temps T5, conforme a l’allure donnée sur le
document 1.

IV. La RMN pulsée

Q13.

Q14.

— —
Tout d’abord, ||Bi|| = B1 = Cste. Ensuite, si on représente B a
t =0, puis a t; tel que wt; = 7/2, nous obtenons :

Ainsi, 'extrémité de By décrit un cercle de rayon By dans le
sens horaire.

Négliger les phénomenes de relaxation revient a faire 73 — +o0
et Ty — +oo dans les équations de Bloch. Le champ magnétique
vu par le dipdle étant maintenant By + B, il vient :

_>
dM — —

—
avec W = —ypBo el = —wpe; et i = — 7, Bl = —w; &.
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Q15.

Q16.

Il s’agit d’une rotation de repeére dans le sens horaire, ce qui
donne :

W(R/Ry) = —wes

Utilisons la loi de dérivation vectorielle :
— — —
dM dM dM
p— = — +Z?(R1/R0)/\]\—4>: p— —z,nje_;/\]\—%>
dt dt dt
Ro Ry Ry

et, d’autre part :
%
dM — —
—_— :fwoej/\Mfwle_f/\M
dt R

En regroupant les deux expressions, nous obtenons :

%
dM — —
—_— :(w—wo)e_;/\M—wle_l)/\M
dt
Ry
=M A [(wg—w)el +wief]
d’ou :
— woy — W w
Beft = — g+ 2Le =B -—|a+Ba
Vp Tp Tp

qui est bien homogene a un champ magnétique. Ce champ "effec-
tif" est représenté sur le figure ci-dessous, dans le cas ou wy > w :

7|

eff

Q17.

Q1s.

Q19.

Q20.

Dans le référentiel tournant, nous sommes ramenés a la situation
des questions 9., 10. et 11. Le vecteur aimantation va avoir un
mouvement de précession autour de 'axe défini par le champ
magnétique effectif Beg.

Si on tient compte des temps de relaxation 137 et Tb, ce mouve-
ment de précession va s’amortir. Le vecteur aimantation va venir

b 3 b 4 : ol .
s’aligner selon I'axe défini par le champ magnétique effectif Beg,
avec une constante de temps 77, tandis que les composantes de
M orthogonales a cet axe vont tendre vers 0 avec une constante
de temps T5.

_> ,
Comme, selon le document 3, la norme de M est conservée au
cours de ce basculement, le vecteur M va finir par s’aligner selon
I’axe de Beg, avec une norme égale a M.

Il faut faire varier la direction de I'axe de B—eé en agissant sur
la vitesse angulaire w du champ toB)rnant et en attendant un
temps 7" > max(71,7T>) pour que M ait le temps de s’aligner
sur cet axe. Ainsi, pour faire basculer M dans le plan Ozxy, il est
nécessaire que w = wy.

AN.:w=uwy=2,67.10° rad.s~! et donc f = w/27 = 42,5 MHz,
ce qui correspond & des ondes radiofréquence.

On appelle ce phénomene "résonance" parce que ce basculement
se produit pour une fréquence caractéristique fo du systeme.

Il faut que ¢; > max(T1,T2) (déja répondu a la question précé-
dente). D’apres le document 3, 77 > Tb pour les tissus étudiés et
donc il faut que ¢t1 > T} qui varie de 0,2 s a 3 s et qui dépend de
I'intensité de By.



MP Janson de Sailly

Corrigé du DS n°4 - Electromagnétisme

I11.

1)

2)

3)

Magnétorésistance. Mines-Pont PSI 2016

Le probéme est invariant par toute rotation autour de l'axe Oz
et par toute translation le long de 'axe Oz puisqu’on néglige les
effets de bord. On a donc V = V (r)

On a :
dlvﬁ———o et ﬁ —gl"?)iv

ce qui implique :
—
div (grad V) =AV =0
qui est ’équation de Laplace. On en déduit que :

d / dV dv . B ,
I (Tdr>—0 donc TE—C dou V(r)=Cln(r)+C

ou C et C' sont deux constantes. Les conditions aux limites im-
posent :

V(T‘l) = = Cln(rl) +C = %
V(re)= = Clan(rg)+C' =V,

On résout pour en déduire que :

Vi—VWs i—V,

C=——" ¢ "=V — ——=
In(ry/re) ¢ ! In(ry/re)

111(7“1)

Il s’ensuit que :

Pegmive - Wa_ Co_ V-V &
dr r In(rqo/ri) r

Un électron de conduction dans le volume dr, assimilé a une
charge ponctuelle M; de vecteur vitesse E}, est soumis a :

o La force électrique —e ﬁ(MZ)
e La force magnétique —e A B
e La force de frottement —\ UZ

Le principe fondamental de la dynamique (PFD) donne :

Me —— dvl = —eﬁ

T —eﬂ/\?—)\ﬁ?

En sommant sur les § NV électrons de conduction contenus dans
d7 on obtient :

N

ON
Z‘Mﬁ—AZUf
i=1

i=1

ON d—>

Me
i=1

:_ezﬁ

En supposant que le champ électrostatique varie peu a ’échelle
de I’élément de volume d7 on peut ’assimiler a sa valeur en M
situé sur un sommet du petit parallélépipede formant le volume
dr (et a la distance r de 'axe Oz). D’autre part, en permutant la
somme et la dérivation dans le membre de gauche et en utilisant

le fait que 5 est uniforme, on obtient :
ON ON ON
me% (ZUZ) = —eéNE(M) —e (ZUZ) /\ﬁ—)\ ZU;
i=1 i=1 i=1

On introduit ensuite la vitesse de dérive ’U_g(M ,t) des électrons
de conduction en M et a l'instant t. Par définition, c’est la
moyenne arithmétique :

ve (M, t) <Z )
On obtient alors :

me(?(&Nz:;t(Mt _ (5N§

—eSNT(M, t)AB —AON (M, t)
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4)

5)

Enfin, comme N = ndr, que I’élément de volume dr reste fixe
et que le vecteur densité de courant est donné par :

j(Mv t) = _enU—g(M7t)

(les électrons de conduction sont les seuls PCM puisque les ions
sont fixes dans le référentiel d’étude), il vient (tous les champs
vectoriels étant évalués au point M et & l'instant ¢) :

—%@dT: —enﬁdT—i—j/\ ?dT—f—é;dT
e Ot e

En simplifiant d7, on aboutit a :

o7 ne’
= — — (M, ?—— M,
5 M me] t) A . I M)

ce qui est bien I’équation demandée.

, . . . - - . a8
En régime stationnaire on a dj/0t = 0, ce qui conduit & :

MAB =" B

Comme le point M est a la distance r de Oz et qu’on suppose
I'invariance des courants par toute translation de direction Oz et
par toute rotation d’axe Oz, on pose :

— . .
7 (M) = ju(r) & + Go(r) & + jo(r) & et E(M r) e

L’équation précédente peut étre explicitée sur la base cylindrique
(e—T), e, el €z). On obtient :

]:r e B]O ne2 E(T)
Jo | + N —Bjr | = By
Jz 0 0

6)

d’ou le systeme :

+(eB/N)jo = (ne?/X) E(r)
do—(eB/N)jr = 0
On résout pour trouver :
ne?  E(r) eB ne*  E(r)
r = N T 3m2 . ~N N o 2Rn2 t .z =0
J \ 1+82AE2;2 Jo = DY 1+€2)\E2;2 et 7

L’équipotentielle est la surface cylindrique de rayon r et de hau-
teur h. On a donc, avec (@ = rdfdz e, :
20+h 2 R
I:// (f’? / / ]Trdﬁdz:ﬁ%%rrh
S 0=0 J z= A 1+ 6)\2

En remplagant E(r) par son expression on obtient :

nez Vi — Vs 1

=27rh —
N In(ra/ra) 1 1+ <8
d’ou :
Vi—V, A e2 B2
R I 2mh ne? n(ra/m) ( + A2

Si on note Ry la résistance en l'absence de champ magnétique

alors :
A

Ry= "
0= onhne?

In(re/71)

On remarque alors que :

QBQ 232
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AN.:Ry=110Qet e =79.10"11

Cette variation relative de résistance est vraiment trés faible et
probablement tres difficile a déceler.

10



