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CORRIGÉ du DS n°3 (CCP-e3a) - Partie électromagnétisme

1 Étude d’un condensateur
ÉTUDE D’UN MICROPHONE ÉLECTROSTATIQUE. D’après Centrale TSI

I. Capacité du condensateur au repos
1) Étant donné un point M quelconque de coordonnées (x, y, z), les plans (M,−→ux,

−→uy) et
(M,−→ux,

−→uz) sont deux plans de symétrie des charges contenant M . On en déduit que :
−→
E1(M) = E1(x, y, z)−→ux. De plus, il y a invariance par toute translation le long de Oy et
de Oz ce qui entraîne que E1 ne dépend ni de y, ni de z. On a donc :

−→
E1(M) = E1(x)−→ux
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•
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P1

x
•

O

•
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•
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−→
E (M ′)

2) Le plan de P1 = (Oyz) est un plan de symétrie des charges électriques : de part et d’autre
de ce plan, le champ électrique est transformé en son symétrique. Nous avons donc :

−→
E1(M ′) = symOyz

−→
E1(M) = −−→E1(M)

3) On prend une surface de Gauss (surface fermée) Sg en forme de cylindre de génératrices
// à Ox, de surface de base S et placé symétriquement par rapport au plan de P1. Un
point M de coordonnée x > 0 est supposé être situé sur la base supérieure du cylindre.
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Le théorème de Gauss donne :∫∫
Sg

−→
E1.
−→
dS =

∫∫
Base sup

−→
E1(M).

−−→
dSM +

∫∫
Base inf

−→
E1(M ′).

−−−→
dSM ′ +

∫∫
Surf lat

−→
E1.
−−→
dSlat

L’intégrale sur la surface latérale du cylindre est nulle et les deux premières intégrales
sont égales. Il vient alors :∫∫

Sg

−→
E1.
−→
dS = 2

∫∫
Base sup

−→
E1(M).

−−→
dSM = 2E1(x)S = Qint

ε0
= σS

ε0
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et donc E1(x) = σ

2ε0
si x > 0. Dans le cas où x < 0, on utilise la propriété de symétrie

de −→E1 de part et d’autre du plan de symétrie P1. En résumé :

−→
E1(M) =


σ

2ε0
si x > 0

− σ

2ε0
si x < 0

4) On peut dresser le tableau ci-dessous :

x −∞ 0 e +∞
−→
E1 −σ/2ε0

−→ux σ/2ε0
−→ux σ/2ε0

−→ux−→
E2 σ/2ε0

−→ux σ/2ε0
−→ux −σ/2ε0

−→ux−→
E

−→0 σ/ε0
−→ux

−→0

On a donc : −→E (M) = σ

ε0

−→ux entre les deux plaques P1 et P2 et −→E (M) = −→0 partout
ailleurs.

5) Appliquons le théorème de la circulation entre les deux plaques, le long d’un chemin
rectiligne allant d’un point A1 de P1 vers un point A2 de P2.

P1 P2

x

0 e

•A1 •A2

On obtient :

uc = VP1 − VP2 =
∫ A2

A1

−→
E .
−→
d` =

∫ e

0

σ

ε0

−→uz.dz−→uz = σ

ε0
e = q e

Sε0

d’où l’expression :

C0 = ε0S

e

II. Introduction d’une plaque métallique entre les deux armatures du condensateur

1) Initialement, les électrons de conduction de P se déplacent sous l’influence du champ
électrique −→E = σ/ε0

−→ux créé par le condensateur. Comme −→Fél = −e−→E , les électrons
s’accumulent sur la face A et il y a un défaut d’électron sur la face B. On a donc :

σA < 0 et σB > 0

Comme la plaque est initialement non chargée, on a :

σA = −σB
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2) Le champ électrique total −−→Etot créé par l’ensemble {P1 +P2 +A+B } est la superposition
du champ −→E créé par {P1 + P2 } qui a déjà été calculé à la question I.3) et des champs
électriques −→EA et −→EB créés par les faces A et B. En ordonnant les résultats dans un
tableau, nous avons :

x 0 x0 x0 + d e
−→
E σ/ε0

−→ux σ/ε0
−→ux σ/ε0

−→ux−→
EA −σA/2ε0

−→ux σA/2ε0
−→ux σA/2ε0

−→ux−→
EB −σB/2ε0

−→ux −σB/2ε0
−→ux σB/2ε0

−→ux

Pour x0 6 x 6 x0 + d, le champ électrique total s’écrit :
−−→
Etot = σ

ε0

−→ux + σA

2ε0

−→ux −
σB

2ε0

−→ux = σ

ε0

−→ux + σA

ε0

−→ux = −→0

On en déduit que :
σA = −σ et σB = σ

3) D’après le tableau étudié à la question précédente, nous avons :

−−→
Etot = σ

ε0

−→ux pour x ∈ [0, x0] et x ∈ [x0, x0 + d]

ce qui signifie que dans ces deux régions les champs électriques créés par A et B se
compensent.

Comme le champ électrique est nul dans le domaine x ∈ [x0, x0 + d], le potentiel y est
constant et V (x0) = V (x0 + d). On en déduit que :

uc = V (x = 0)−V (x = e) = {V (0)−V (x0) }+{V (x0+d)−V (e) } = σ x0
ε0

+σ (e− x0 − d)
ε0

et donc :

uc = σ (e− d)
ε0

4) En posant σ = q/S, il vient :

uc = q (e− d)
Sε0

= q

C ′

et donc :

C ′ = ε0 S

e− d
>
ε0 S

e
= C0

La plaque métallique permet donc d’augmenter la capacité du condensateur.

III. Réponse du circuit électrique en régime permanent sinusoïdal. D’après Cen-
trale TSI

1) Durant le passage de l’onde acoustique, l’écartement entre les deux armatures du conden-
sateur devient e+ x1(t) et la capacité s’écrit :

C(t) = ε0S

e+ x1(t) = ε0S

e

1
1 + x1/e

≈ ε0S

e

(
1− x1(t)

e

)
= C0 − C0

X1
e

cos(ωt)

et donc :

C1 = C0
X1
e
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2) a) On a :

i = d(Cuc)
dt = C(t) duc

dt + uc
dC
dt

b) Il vient donc :
u = Ri = RC

duc

dt + ucR
dC
dt

Or uc = U0 − u, ce qui entraîne :

u = −RC du
dt + (U0 − u)RdC

dt
d’où :

RC
du
dt +

(
1 +R

dC
dt

)
u = RU0

dC
dt

3) En notant que RdC
dt = RC0ω

X1
e

sin(ωt), on peut supposer que, lorsque X1/e� 1 :∣∣∣∣RdC
dt

∣∣∣∣� 1 et C ≈ C0

On a donc :
RC0

du
dt + u = RC0ωU0

X1
e

sin(ωt)

En divisant par C0, on obtient :

du
dt + ω0u = ωU0

X1
e

sin(ωt) = ωU0
X1
e

cos
(
ωt− π

2

)
et on obtient bien le résultat demandé par l’énoncé.

du
dt + ω0 u = ωA cos

(
ωt+ π

2

)
avec A = U0X1

e
et ω0 = 1

RC0

4) Dans le domaine complexe : u(t) = U exp(jωt) exp(jϕu), ce qui conduit à :

(jω + ω0)u(t) = −jωU0
X1
e
ejωt =⇒ u(t) = −jω

(jω + ω0)U0
X1
e
ejωt

d’où :

U = |u | = ω√
ω2

0 + ω2
U0

X1
e

5) On étudie les asymptotes basse et haute fréquence :

• Si ω � ω0, U ≈ U0
X1
e

ω

ω0
donc 20 log U = 20 log

(
U0

X1
e

)
+ 20 log

(
ω

ω0

)
. C’est une

droite de pente +20 dB/décade.
• Si ω � ω0, U ≈ U0

X1
e donc 20 log U = 20 log

(
U0

X1
e

)
.

L’allure du graphe reproduit ces deux comportements asymptotiques. On remarque qu’il
y a une asymptote basse fréquence qui varie de −8 dB à 30 Hz jusqu’à 0 dB à 70 Hz. On
peut calculer sa pente :

p = 0 + 8
log 70− log 30 ≈ 22 dB/décade

ce qui confirme le modèle théorique.
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6) Les deux asymptotes se coupent en ω0 = 2πf0. On lit sur le graphique f0 = 70 Hz et
donc :

C0 = 1
2π f0R

= 2,3× 10−7 F

7) On peut supposer qu’il y a une résonance mécanique à la fréquence fR = 2.104 Hz, pour
la pulsation caractéristique ωR =

√
ke/me, ce qui donne :

√
ke/me = 2πfR = 1,3.105 rad.s−1
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