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Ondes planes électromagnétiques dans le vide

Dans tout le chapitre on note (R) le référentiel d’étude et on le
munit d’un repère d’espace R = (Oxyz) dont la base cartésienne
associée (−→ex,−→ey ,−→ez ) est orthonormale directe.
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I. Ondes planes

1) Introduction

Nous allons étudier dans ce chapitre des solutions particulières
de l’équation de d’Alembert scalaire, qu’on appelle ondes planes
(OP) :

∆s− 1
v2

∂2s

∂t2
= 0 (1)

où v est une constante positive, homogène à une vitesse.

Rappelons d’autre part qu’en dehors des charges et des courants,
c’est à dire en tout point M tel que ρ(M, t) = 0 et ~j(M, t) = ~0, le
champ électromagnétique (−→E ,−→B ) satisfait aux équations de d’Alem-
bert vectorielles :

∆−→E − 1
c2
∂2−→E
∂t2

= ~0 et ∆−→B − 1
c2
∂2−→B
∂t2

= ~0

où c = 1/√µ0ε0 est la célérité de la lumière dans le vide.

En projetant sur la base cartésienne (−→ex,−→ey ,−→ez ) on obtient six équa-
tions de la forme :

∆s− 1
c2
∂2s

∂t2
= 0

où s désigne une des composantes cartésiennes Ex, Ey, Ez, Bx, By, Bz
de −→E et −→B . Cela correspond donc à un cas particulier de l’équation
(1) avec v = c.

Les ondes planes (et en particulier les OPPS) sont des solutions
mathématiques de l’équation de d’Alembert mais elles n’ont pas d’exis-
tence physique. Leur intérêt est que toute onde peut toujours être vue
comme une somme d’ondes planes (paquet d’ondes)

2) Ondes planes

Définition 1. Onde plane
On dit que s(M, t) est une onde plane (OP) si et seulement s’il existe

une droite ∆ telle que, pour tout plan P⊥∆ on ait la propriété :

∀ (M1,M2) ∈P ×P, ∀ t, s(M1, t) = s(M2, t)

Autrement dit, à chaque instant t et pour chaque plan P⊥∆, s
prend la même valeur en tout point de P.

Définition 2. Plans d’onde
Les plans P⊥∆ sont appelés plans d’onde associés à l’onde plane.

Remarque :

Dans toute la suite la droite ∆ sera orientée par un vecteur unitaire
directeur ~u et on prendra l’origineO du repère d’espace sur ∆ :O ∈ ∆.
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3) Étude des solutions à onde plane

On étudie les solutions de (1) qui sont des ondes planes : il s’agit
donc de solutions particulières (les seules au programme).

Pour commencer on suppose que ∆ = Ox (donc ~u = −→ex) et on
donnera le cas général après.

y

•
O

x

z

−→ex

Théorème fondamental
La solution générale de l’équation (2) s’écrit :

s(x, t) = f
(
t− x

v

)
+ g

(
t+ x

v

)
(∗)

où f et g sont deux fonctions quelconques de R dans R, à condition
qu’elles soient C2 sur R.

Dans le programme on nous demande seulement de vérifier que (*)
est bien solution de l’équation (2) (et pas de démontrer que c’est la
solution générale).

.
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4) Interprétation : onde plane progressive (OPP)

Cours à noter sur feuille libre.

5) Cas où ∆ est quelconque

Cours à noter sur feuille libre.

II. Onde plane progressive sinusoïdale (ou
harmonique)

Toute cette partie est à noter sur feuille libre.

1) Définition

2) Double périodicité spatiale et temporelle

a) Spatiale

b) Temporelle

3) Phase de l’OPPS. Vitesse de phase

4) Vecteur d’onde

5) Représentation complexe d’une OPPS

III. OPPS électromagnétique dans le vide

1) Préambule technique

Pour des raisons de commodités de calcul on va très souvent utili-
ser des vecteurs à composantes complexes. (−→ex,−→ey ,−→ez ) étant la base
cartésienne orthonormale directe associée au repère d’espace (Oxyz)
attachée au référentiel (R), on pose par définition :

~a
déf= ax

−→ex + ay
−→ey + az

−→ez

avec (ax, ay, az) ∈ C3.
~a est un vecteur à composantes complexes et ax, ay et az sont ses

trois composantes complexes sur la base (−→ex,−→ey ,−→ez ).
Exemple :

Propriétés : cours à noter sur feuille libre.

2) Définition d’une OPPS (ou OPPH) électromagné-
tique dans le vide

Par définition, une onde plane progressive sinusoïdale électroma-
gnétique (OPPS EM) dans le vide qui se propage dans une direction
et un sens définis par le vecteur unitaire ~u est consituée d’un champ
électrique et d’un champ magnétique dont les expresssions sont don-
nées par :

−→
E (M, t) = Emx cos

Ä
ωt− ~k.~r + ϕx

ä −→ex
+ Emy cos

Ä
ωt− ~k.~r + ϕy

ä −→ey
+ Emz cos

Ä
ωt− ~k.~r + ϕz

ä −→ez
et

−→
B (M, t) = Bmx cos

Ä
ωt− ~k.~r + ψx

ä −→ex
+Bmy cos

Ä
ωt− ~k.~r + ψy

ä −→ey
+Bmz cos

Ä
ωt− ~k.~r + ψz

ä −→ez
où ~r = −−→

OM est le vecteur position du point M , ~k = k ~u avec
k = ω/c (puisqu’ici v = c) est le vecteur d’onde associé à l’OPPS.

Ainsi, les composantes cartésiennes Ex, Ey, Ez, Bx, By et Bz sont
des OPPS scalaires qui vibrent à la même pulsation ω et qui ont le
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même vecteur d’onde ~k. Les seules différences sont les amplitudes
réelles et les phases à l’origine des temps et de l’espace.

Représentation complexe associée à l’OPPS EM :

On introduit les représentations complexes des trois composantes
cartésiennes du champ électrique :

Ex(M, t) = Emx e
i(ωt−~k.~r+ϕx) = Emx e

iϕx ei(ωt−
~k.~r)

Ey(M, t) = Emy e
i(ωt−~k.~r+ϕy) = Emy e

iϕy ei(ωt−
~k.~r)

Ez(M, t) = Emz e
i(ωt−~k.~r+ϕz) = Emz e

iϕz ei(ωt−
~k.~r)

telles que Ex = Re(Ex), Ey = Re(Ey) et Ez = Re(Ez).

On définit ensuite le vecteur champ électrique complexe −→E (M, t)

De la même façon pour le champ magnétique :

Bx(M, t) = Bmx e
iψx ei(ωt−

~k.~r)

By(M, t) = Bmy e
iψy ei(ωt−

~k.~r)

Bz(M, t) = Bmz e
iψz ei(ωt−

~k.~r)

telles que Bx = Re(Bx), By = Re(By) et Bz = Re(Bz).

On définit ensuite le vecteur champ magnétique complexe

3) Intérêt des grandeurs complexes

L’intérêt des grandeurs complexes est qu’elles facilitent grandement
les calculs. En effet, on a les règles de calcul suivantes pour les OPPS
vectoriels complexes :

Règles de calcul

Si ~a = −→Am ei(ωt−
~k.~r) alors ∂~a

∂t
= iω~a ; div~a = −i~k.~a et

−→rot~a = −i~k ∧ ~a ; ∆~a = − (~k.~k)~a

Remarques :
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4) Spectre des ondes électromagnétiques

Dans le cas d’ondes planes progressives sinusoïdales (OPPS), on
peut définir la longueur d’onde λ (période spatiale), la période tem-
porelle T , la fréquence ν = 1/T . Ces grandeurs sont liées par les
relations :

λ = cT = c/ν

Dénominations des rayonnements électromagnétiques selon les
valeurs de λ (spectre des ondes électromagnétiques).

Rayons γ : λ < 1 nm
Rayons X : 1 nm < λ < 100 nm
Ultraviolet : 100 nm < λ < 400 nm
Lumière visible : 400 nm < λ < 700 nm
Infrarouge : 700 nm < λ < 0,1 mm
Ondes Hertziennes : λ > 0,1 mm

Remarque :

Dans le domaine visible, à une longueur d’onde λ est associée
une couleur bien précise (perception visuelle). On parle alors d’ondes
planes progressives monochromatiques (OPPM) dans le cas des ondes
électromagnétiques. On peut donc utiliser les termes synonymes :
OPPS, OPPH ou OPPM.

λ(nm)
Valeur
moy. 410 460 530 580 620 670

Intervalle 400-425 425-490 490-575 575-585 585-650 650-700
Couleur perçue Violet Bleu Vert Jaune Orange Rouge

Ordre de grandeur des fréquences du visible : ν = 1014 Hz

Fréquence
moyenne (Hz) 4.4.1014 4.8.1014 5.2.1014 5.6.1014 6.5.1014 7.3.1014

Couleur perçue Rouge Orange Jaune Vert Bleu Violet

Tableau des correspondances fréquence - couleur (la valeur de la
fréquence est celle qui correspond au centre de chaque gamme de
couleur)

5) Transposition des équations de Maxwell dans le do-
maine complexe

La linéarité des équations de Maxwell permet de les transposer dans
le domaine complexe. Cette partie du cours est à noter sur feuille libre.

6) Polarisation des OPPS électromagnétiques

a) Polarisation rectiligne

Définition
On dit qu’une OPPS électromagnétique est polarisée rectilignement

si et seulement si, en tout point M et à chaque instant t, on peut
écrire son champ électrique de la façon suivante :

−→
E (M, t) = Em

−→up cos(ωt− ~k.~r + ϕ)

où −→up est un vecteur unitaire constant qui définit la direction de po-
larisation rectiligne.
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Remarque et exemple :

b) Polarisation circulaire

Pour des raisons de facilité de calculs prenons une OPPS électro-
magnétique qui se propage selon +−→ez : ~k = k−→ez . L’expression la plus
générale de son champ électrique s’écrit :
−→
E (M, t) = Emx cos(ωt− kz + ϕx)−→ex + Emy cos(ωt− kz + ϕy)−→ey

y

•
O

x

z

x

y

•

Hz
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Dans le cas général : ϕ, Emx et Emy quelconques, la trajectoire du
point P est une ellipse. On dit que l’onde est polarisée elliptique-
ment. Ce cas général est hors programme de MP et on ne l’étudiera
donc pas.

x

y

Dans le cadre du programme de MP on s’intéresse au deux cas
particuliers suivants :

1er cas : Emx = Emy = Em et ϕ ≡ π

2 [2π]

•

Hz
x

y

.

2ème cas : Emx = Emy = Em et ϕ ≡ − π2 [2π]

•

Hz
x

y
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7) Énergie d’une OPPS électromagnétique

Cours à noter sur feuille libre.

IV. Application : réflexion d’une OPPS élec-
tromagnétique sur un métal parfait

Toute cette partie du cours est à prendre sur feuille libre. En voici
le plan.

1) Définition d’un métal parfait

2) Relations de passage

3) Réflexion d’une OPPS électromagnétique sur un
métal parfait

4) Définition d’une onde stationnaire

5) Caractéristiques d’une onde stationnaire

6) Énergie de l’onde stationnaire

7) Courants surfaciques sur le métal
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