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Correction - DS n°5 - CCINP-e3a

1 Étude d’un cyclotron

Rq : On peut aussi 

appliquer un TEM 

(plus rapide)
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2 La structure interne de Jupiter (d’après e3a-MP-2020)

Électrostatique et gravitation universelle
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Distribution sphérique de masse non homogène
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3 Moteur synchrone
Partie I. − Structure du champ magnétique produit par des bobines

1. Voir le cours. On trouve :
−→
B (M) = µ0nI

−→ez
Ce champ magnétique est uniforme à l’intérieur du solénoïde.

2. −→
B (M) = B(x, y, z)−→ez

a) Ces sont des droites parallèles à −→ez . On a donc :

−→ez
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b) On a :
div−→B = −→∇ .−→B = 0 donc ∂B

∂z
= 0 =⇒ B indépt. de z

De plus, en dehors des courants et en régime stationnaire, l’équation de Maxwell-
Ampère donne :

−→rot−→B = −→∇ ∧−→B = −→0 =⇒ ∂B

∂y
−→ex −

∂B

∂x
−→ey = −→0 donc ∂B

∂x
= 0 et ∂B

∂y
= 0

B ne dépend donc pas non plus ni de x, ni de y. Il s’ensuit que B ne dépend d’aucune
coordonnées : il s’agit bien d’un champ uniforme.
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a) Tout plan contenant (Oz) est un plan d’antisymétrie de la distribution de courants
et donc un plan de symétrie de −→B contenant M ∈ (Oz). On en déduit que −→B (M)
doit appartenir à tous ces plans, donc à leur intersection qui est l’axe (Oz). On a
donc −→B (M)//−→ez

b) On fait θ1 → 0 et θ2 → π tout en maintenant constant n = N/`. On retrouve bien
−→
B (M) = µ0nI

−→ez .
c) On remarque que :

cos(π−θ1) = z − `/2√
R2 + (z − `/2)2 = − cos θ1 et cos(π−θ2) = z + `/2√

R2 + (z + `/2)2 = − cos θ2

On en déduit que :

−→
B (M) = µ0NI

2`

[
z + `/2√

R2 + (z + `/2)2 −
z − `/2√

R2 + (z − `/2)2

]
−→ez

d) En z = 0 on obtient :
−→
B (O) = µ0NI

2
√
R2 + (`/2)2

Application numérique : I ≈ 8,5 A. C’est une valeur élevée du courant. La tempé-
rature du fil risque d’augmenter fortement par effet Joule. Pour baisser la valeur de
I tout en maintenant B constant il faut augmenter N mais il se pose un problème
d’encombrement (on peut toutefois bobiner le fil sur plusieurs couches). On peut
aussi vouloir baisser la résistivité du fil en prenant un matériau plus conducteur,
voir supraconducteur.

‖
−→
B (z = 10 cm)‖ = 8,1 mT. L’intensité du champ magnétique diminue donc très

fortement et rapidement dès qu’on sort de la bobine.
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3. a) Le plan (M,−→er ,−→ez ) est un plan d’antisymétrie des courants donc un plan de symétrie
contenant M . On a donc Bθ = 0.

D’autre part, il y a invariance des courants par toute rotation autour de Oz. On a
donc Br = Br(r, z) et Bz = Bz(r, z) indépendants de θ.

b) Le plan (Oxy) est un plan de symétrie des courants, donc un plan d’antisymétrie de
−→
B . Si on considère deux points M(r, θ, z) et (M, θ,−z) symétriques par rapport à
ce plan, alors : −→

B (M ′) = − symOxy

−→
B (M)

d’où :
Br(r,−z)−→er +Bz(r,−z)−→ez = −{Br(r, z)−→er −Bz(r, z)−→ez }

et donc Bz(r,−z) = Bz(r, z).
c) Non car (Oxy) est un plan de symétrie des courants et donc un plan d’antisymétrie

de −→B . En tout point M de ce plan −→B (M)⊥(Oxy). Aucune ligne de −→B ne peut donc
appartenir au plan (Oxy).

d) −→B est à flux conservatif donc div−→B = 0. En coordonnées cylindriques cela donne :

1
r

∂ (rBr)
∂r

+ ∂Bz
∂z

= 0 ⇐⇒ 2B(O)α z −B(O) 2z
D2 = 0

d’où :
α = 1

D2
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Partie II. − Étude d’un champ magnétique tournant

4. On peut dessiner deux schémas équivalents : une pour le circuit de la bobine horizontale
et l’autre pour le circuit de la bobine verticale :

Lb

Rb

R0 i1

u(t)

Bobine horizontale

Lb

Rb

R0
C

i2

u(t)

Bobine verticale

5. Déterminer :
a) On passe dans le domaine complexe :

u(t) = (R0 +Rb + jLbω0) i1(t) d’où i1(t)
u(t) = 1

R0 +Rb + jLbω0

On veut arg
(
i1(t)
u(t)

)
= −π/4 (retard de phase), ce qui donne :

− arctan
(

Lbω0
R0 +Rb

)
= −π4 d’où Lbω0 = R0 +Rb

et donc :
R0 = Lbω0 −Rb

b) De la même façon :

u(t) = (R0 +Rb + jLbω0 + 1
jCω0

) i2(t) d’où i2(t)
u(t) = 1

R0 +Rb + jLbω0 + 1
jCω0

On veut arg
(
i2(t)
u(t)

)
= +π/4 (avance de phase), ce qui donne :

− arctan
(
Lbω0 − 1

Cω0

R0 +Rb

)
= π

4 d’où Lbω0 −
1

Cω0
= −(R0 +Rb)

ce qui donne :

C = 1
ω0(Lbω0 +R0 +Rb)

= 1
2Lbω2

0

en utilisant la valeur de R0 trouvée à la question précédente.
c) Application numérique : R0 = 125 Ω et C = 6,3 µF, ce qui sont des valeurs tout à

fait convenables et qu’on peut facilement obtenir au laboratoire.
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d) Avec les valeurs trouvées aux questions précédentes on obtient :

Im1 = |i1(t)| = |u(t)|
|Lbω0 (1 + j)| = U√

2Lbω0

et
Im2 = |i2(t)| = |u(t)|

|R0 +Rb − j(R0 +Rb)|
= |u(t)|
|Lbω0 (1 + j)| = U√

2Lbω0

Ainsi les intensités parcourant les deux bobines ont bien la même amplitude lorsque
les conditions précédentes sont remplies. Dans la suite on posera Im1 = Im2 = Im et
donc :

i1(t) = Im cos
(
ω0t−

π

4

)
et i2(t) = Im cos

(
ω0t+ π

4

)
6. Les deux bobines étant identiques et le point A étant situé à la même distance d de O1

ou de O2, on en déduit que les champs magnétiques créés par la bobine horizontale et
par la bobine verticale s’écrivent respectivement :

−→
B1(A, t) = α i1(t)−→ez et −→B2(A, t) = α i2(t)−→ey

où α est un facteur géométrique qui dépend de d, R, N et µ0. En posant B0 = αIm et en
utilisant le théorème de superposition on en déduit que :

−→
B (A, t) = B0

[
cos

(
ω0t−

π

4

)
−→ez + cos

(
ω0t+ π

4

)
−→ey
]

7. Si on remarque que :

cos
(
ω0t±

π

4

)
= cos(ω0t)

1√
2
∓ sin(ω0t)

1√
2

on obtient :

‖
−→
B (A, t)‖2 = B2

0
2
[

(cos(ω0t) + sin(ω0t))2 + (cos(ω0t)− sin(ω0t))2
]

= B2
0

et, en notant ϕ(t) l’angle que fait le vecteur −→B (A, t) avec −→ey à l’instant t, on a :

ϕ(t) = ω0t+ π

4

Ainsi le vecteur −→B (A, t) est un vecteur tournant dans le sens trigonométrique, avec la
vitesse angulaire ω0. Sa norme reste constante au cours de la rotation.

Partie III. − Principe du moteur synchrone

8. a) À l’instant t on a :

−→m = m cos
(
ωt+ π

4 − α
)
−→ey +m sin

(
ωt+ π

4 − α
)
−→ez

On calcule produit vectoriel avec le champ magnétique tournant dont l’expression
est donnée à la question 6. et on utilise le formulaire donné en début d’énoncé pour
trouver ;

−→Γ (t) = mB0
2

[
cos ( (ω + ω0)t− α) + cos

(
(ω − ω0)t+ π

2 − α
)

− sin
(

(ω + ω0)t+ π

2 − α
)
− sin ( (ω − ω0)t− α)

]
−→ex
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b) Si ω 6= ω0 les valeurs moyennes de tous les cos et sin sont nulle. La seule possibilité
pour qu’elles ne soient pas nulles est ω = ω0. Les valeurs moyennes des termes en
cos( (ω + ω0)t+ ...) et sin( (ω + ω0)t+ ...) restant nulles, il ne reste alors que :

ω = ω0 et 〈−→Γ 〉 = mB0 sinα−→ex

c) On veut que 〈−→Γ 〉.−→ex > 0 et il s’ensuit que sinα > 0, ce qui impose α ∈]0, π[
9. a) Le schéma est donné ci-dessous :

〈
−→Γ 〉.−→ex

0
α

π

mB0
2

mB0

π/2

•

α1

•

α2

Si on applique le théorème du moment cinétique à la boussole, sachant que ω =
Cste, on obtient (en désignant par J le moment d’inertie de la boussole par rapport
à l’axe de rotation Ox) :

J ω̇ = 0 = 〈−→Γ 〉.−→ex −
mB0

2 d’où sinα = 1
2

ce qui donne les deux solutions α1 = π/6 et α2 = π − π/6 = 5π/6.
b) Provisoirement on a donc ω < ω0 puisque la boussole est ralentie.
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