
MP1&2 Janson de Sailly DS n°5 (CCINP-e3a) - Électrostatique - Magnétostatique

DS n°5 - CCINP-e3a (Samedi 24 janvier 2026 - Durée 4h)

1 Étude d’un cyclotron
Données générales pour l’exercice :

masse d’un proton : m =1,67×10−27 kg
Charge élémentaire : e = 1,6×10−19 C
Dans tout l’exercice, le référentiel d’étude est supposé galiléen et il est muni d’un repère (Oxyz).

Un cyclotron est un appareil destiné à produire des particules de grande énergie. Elles y sont
soumises à l’action conjuguée d’un champ électrique ~E accélérateur et d’un champ magnétique
~B déviateur de la trajectoire, tous les deux uniformes.

• Le champ magnétique ~B = B~ez (B > 0) est permanent et il est dirigé suivant l’axe Oz
du repère (Oxyz). Il existe dans tout l’espace, à l’exception d’une petite zone comprise
entre deux plans parallèles, définis par y = −d2 et y = d

2 , distants de d (voir figure).

• Le champ électrique est de la forme ~E = − u(t)
d

~ey où u(t) est une tension périodique, de
période T , représentée sur la figure ci-dessous. Ce champ n’existe qu’à l’intérieur de la
petite zone définie par −d2 < y <

d

2 et il est nul partout ailleurs.

 4 
 
4) Tracer, avec soin, le cercle ( dans le plan P&, dans le cas d’un proton, puis dans le cas d’un électron. 
Préciser en particulier les sens de parcours de chaque particule sur  (. 

5) Application numérique : B = 0,5 µT. On suppose . 

E = 1.6 10-19 C ;  Masse d’un proton : mP=1,67 10-27 kg ;  Masse d’un électron : me=9,1 10-31 kg 
1 eV= 1,6 10-19 J 
 
Calculer, pour un électron d’énergie cinétique  Ec = 55 keV, la norme v de sa vitesse, le rayon a et la période 
T. 

Partie II - Cyclotron 
 

Dans un cyclotron, des protons de masse m et de charge q sont soumis à l’action conjuguée d’un champ 
électrique  et d’un champ magnétique  tous deux uniformes. 
• Le champ magnétique  (B > 0), permanent, est dirigé suivant l’axe Oz d’un repère R(Oxyz) et 

règne dans tout l’espace, à l’exception d’une petite zone comprise entre deux plans parallèles symétriques 
par rapport au plan (xOz) et distants de d. 

• Le champ électrique est de la forme  où E(t) est une fonction T-périodique représentée ci 
dessous. Il n’existe qu’à l’intérieur de cette petite zone –d/2 < y < d/2, et il est nul partout ailleurs. 

 
 

 
 
 
 
 
 
 
 
 
À l’instant t = 0, un proton se trouve en A(0, -d/2, 0) avec une vitesse nulle. 

 
1) On suppose que E(t) = E0 durant la première phase du mouvement. 
a) Déterminer la vitesse v1 ainsi que la date t1 lorsque le proton entre dans la zone où règne le champ 
magnétique. 
b) Quelle est la condition sur T pour que le champ électrique reste constant durant cette première phase 
d’accélération ? En déduire la valeur minimale Emin de E0, en fonction de m, q et T. 
 

Dans la suite de l’exercice, on supposera que E0 >> Emin et on négligera le temps de transfert du proton 
dans la zone d’accélération devant celui passé dans la zone où règne le camp magnétique. En particulier, cela 
signifie que, à l’issue de sa première phase d’accélération, le proton arrive en y = d/2 à l’instant t = t1 ) 0.  
 
2) 
a) Déterminer les coordonnées x(t) et y(t) du proton lorsque celui-ci est dans la zone où règne le champ 

magnétique. 
b) On désigne par S le point où le proton sort de cette zone. Déterminer la date tS à laquelle le proton arrive 

en S ainsi que les coordonnées (xS, yS) de ce point. 
 
3) 
a) De façon générale, quel est le rayon R de la trajectoire dans la zone où règne le champ magnétique 

lorsque la vitesse du proton est v ? 
b) Montrer que l’intervalle de temps *t qui sépare deux accélérations consécutives dans la zone où règne  

s’écrit : *t  = m+ / qB. Quelle doit être la période T du champ électrique pour qu’il soit toujours 
accélérateur ? 
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On étudie le mouvement d’un proton de masse m et de charge e placé dans le cyclotron. À
l’instant t = 0, il se trouve au point A(0,−d/2, 0) avec une vitesse nulle.

1. On suppose que u(t) = −U0 durant la première phase du mouvement.

a) Déterminer la vitesse v1 ainsi que la date t1 lorsque le proton entre dans la zone où
règne le champ magnétique.

b) Quelle est la condition sur T pour que le champ électrique reste constant durant
cette première phase d’accélération ? En déduire la valeur minimale Umin de U0, en
fonction de m, e, d et T .

1



MP1&2 Janson de Sailly DS n°5 (CCINP-e3a) - Électrostatique - Magnétostatique

Dans la suite de l’exercice, on supposera que U0 >> Umin et on négligera le temps de
transfert du proton à l’intérieur de la zone d’accélération devant celui passé dans la zone
où règne le champ magnétique. En particulier cela signifie que, à l’issue de sa première
phase d’accélération, le proton arrive en y = d/2 à l’instant t = t1 ≈ 0.

2. a) Montrer que l’énergie cinétique EC du proton est une constante du mouvement au
cours de son transit dans la zone où règne le champ magnétique.

b) Déterminer les coordonnées x(t) et y(t) de la particule à l’instant t.
c) On désigne par S le point où le proton sort de cette zone. Déterminer la date tS à

laquelle le proton arrive en S ainsi que les coordonnées (xS , yS) de ce point.

3. a) De façon générale, quel est le rayon R de la trajectoire dans la zone où règne le
champ magnétique lorsque la vitesse du proton a pour norme v ?

b) Montrer que l’intervalle de temps ∆t qui sépare deux accélérations consécutives
s’écrit : ∆t = mπ

eB
. Quelle condition doit satisfaire la période T de la tension u(t)

pour que le proton soit toujours accéléré dans la zone où règne le champ électrique
~E ?

On suppose que cette condition est réalisée.

c) Montrer qu’après n accélérations, la vitesse du proton vaut :

vn =
√
n

√
2eU0
m

4. Compte tenu des contraintes de construction du cyclotron, le rayon maximal de la tra-
jectoire vaut Rmax = 80 cm. Lorsque cette valeur est atteinte, le proton est éjecté hors
de l’appareil. Déterminer la vitesse vej du proton à la sortie du cyclotron en fonction
de Rmax, e, m et B. En déduire le nombre N de tours effectués avant son éjection de
l’appareil.

Application numérique : B = 0,52 T ; U0 = 1,0 kV. Calculer vej et N .

2 La structure interne de Jupiter

Électrostatique et gravitation universelle

On notera dans toute la suite G la constante de la gravitation universelle dont la valeur
numérique est fournie en fin de sujet. On s’intéresse au champ gravitationnel

−−−→
G(P ) créé en P

par une distribution de masse.
Une distribution de masse volumique % crée un champ gravitationnel ~G (supposé station-

naire) qui satisfait les équations locales suivantes :

div ~G = −4πG % et −→rot~G = −→0 (1)

Q16. Comment s’exprime la force de gravitation exercée par une distribution de masse sur un
point matériel P de masse m en fonction du champ de gravitation

−−−→
G(P ) ?

Q17. Dresser une analogie entre les équations (1) et celles de l’électrostatique. Quelle est la
différence fondamentale entre l’électrostatique et la gravitation ?
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Figure 1 – Paramétrage

Q18. Le potentiel gravitationnel Φ est pour ~G l’analogue de ce qu’est le potentiel électro-
statique V pour le champ électrostatique. Laquelle des deux équations précédentes (1)
permet d’assurer l’existence d’un potentiel gravitationnel Φ pour le champ de gravitation
~G ? Écrire l’équation existant entre Φ et ~G, au signe près. En déduire que le potentiel
gravitationnel satisfait l’équation de Poisson et préciser alors le choix du signe effectué :

∆Φ = 4πG %

Q19. Énoncer le théorème de Gauss liant le champ électrostatique ~E à la distribution volumique
de charge %. En s’appuyant sur l’analogie établie entre l’électrostatique et la gravitation,
montrer que le champ gravitationnel ~G créé par une distribution de masse volumique %
satisfait la relation (2), Mint étant la masse contenue à l’intérieur de la surface fermée Σ,�

M∈Σ

−−−→
G(M) · −−→dSM = −4πGMint (2)

Distribution sphérique de masse non homogène

Lancée en 2011 depuis la Terre, la sonde baptisée "Juno" restera en orbite autour de
Jupiter jusqu’au mois de juillet 2021.
En étudiant les variations du champ de gravitation de Jupiter, la sonde Juno a pour
but de fournir des indications sur la distribution des masses à l’intérieur de la planète,
l’incidence sur celle-ci du déplacement de son atmosphère et du mouvement de marée
généré par ses lunes.
De manière générale, les planètes géantes possèdent :
— un noyau d’éléments lourds ;
— une enveloppe d’hydrogène et d’hélium ;
— au-delà d’une pression donnée, l’hydrogène devient métallique.

On étudie ici quelques propriétés du champ de gravitation d’une distribution sphérique
de masse non-homogène de rayon R. On associe un système de coordonnées sphériques
à cette distribution dont le centre O est à l’origine du système. On notera (~ur, ~uθ, ~uφ) la
base de vecteurs associée. On suppose que la masse volumique %(r) ne dépend que de la
coordonnée radiale r.

Q20. Justifier très précisément que le champ de gravitation est nécessairement de la forme−−−→
G(M) = −G(r)~ur, où G(r) est la norme du champ de gravitation.

Q21. On note M(r) la masse contenue dans la boule de rayon r. Montrer alors que :

M(r) =
� r

0
4πr′2%

(
r′
)

dr′
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Figure 2 – Structure interne de Jupiter - (J. Heyvaerts - Astrophysique)

Q22. En utilisant le théorème de Gauss pour la gravitation, déterminer dans le cas de ce modèle
G(r) pour r > R. On rappelle que MJ est la masse de Jupiter que l’on définira à l’aide
de M(r). Tracer le graphe de r 7−→ G(r) pour r > R.
Donner l’expression du potentiel gravitationnel Φ(r) dont dérive le champ de gravitation
pour r > R en le prenant nul à l’infini.
Dans le référentiel jupiterocentrique supposé galiléen, Jupiter est animée d’un mouve-
ment de rotation supposé uniforme autour de l’axe polaire (Oz), la période associée à
ce mouvement de rotation valant Tsid = 0, 41 jour terrestre. Chaque volume élémentaire
dτ de l’atmosphère de Jupiter, de centre P, immobile dans le référentiel lié à Jupiter
et de masse δm possède donc, dans ce référentiel, un mouvement de rotation circulaire
uniforme de vitesse angulaire ωsid . L’origine du repère est choisie au centre de Jupiter
qui présente une symétrie de révolution autour de l’axe passant par les pôles (Oz) (mais
qui n’est plus supposée sphérique).

Q23. Exprimer, en fonction de ses deux coordonnées sphériques r et θ et de ωsid , le vecteur
accélération du centre P du volume élémentaire dτ dans le référentiel jupiterocentrique.

Q24. Jupiter possède la forme d’un ellipsoïde de révolution. Le rayon polaire possède la valeur
RP = 6, 68 ·104 km et le rayon équatorial possède la valeur RE = 7, 15 ·104 km. Comment
expliquer simplement la forme de cette planète ?
On définit l’aplatissement relatif ε par ε = RE−RP

RE
. Du fait de l’aplatissement de Jupiter,

le potentiel gravitationnel à grande distance a pour expression, avec K = IJ

MJR
2
J
où IJ

est le moment d’inertie diamétral qu’aurait Jupiter, de masse MJ et de rayon RJ , sans
rotation propre (donc sans le phénomène d’aplatissement),

Φ(r, θ) = GMJ

r

[
−1 + εK

2

(
RJ
r

)2 (
3 cos2 θ − 1

)]

On donne la valeur du moment d’inertie diamétral d’une boule pleine, de rayon R et
masse volumique uniforme % : I = 8π

15%R
5.

Q25. Si Jupiter était assimilable en l’absence de rotation propre à une boule pleine, homogène,
de masse volumique uniforme, quelle devrait être la valeur de la constante K = IJ

MJR
2
J

?

Q26. L’étude du champ de gravitation par la sonde Juno permettra l’estimation de la constante
K. En quoi la connaissance de K est-elle intéressante ?
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Les couches supérieures de l’atmosphère de Jupiter sont riches en hélium et dihydrogène
gazeux. On considère alors une région de l’atmosphère de Jupiter à une température T .
Soit d N le nombre d’entités (atomes ou molécules) de masse m dont le module de la
vitesse est compris entre vr et vr + dvr. On suppose une distribution telle que :

dN
N

=
(

m

2πkBT

)3/2
exp

(
− mv2

r

2kBT

)
× 4πv2

r dvr = f (vr) dvr

Q27. Calculer la valeur de vr qui rend f (vr) maximale. On l’appelle vitesse la plus probable
d’agitation thermique et on la note vc.

Q28. Expliquer alors pourquoi, contrairement à l’atmosphère terrestre, l’atmosphère de Jupiter
peut être riche en dihydrogène ou hélium. On pourra comparer les valeurs des vitesses de
libération de la Terre et de Jupiter, en assimilant ces astres à des corps sphériques.
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3 Moteur synchrone
Formulaire et donnée générale :

cos(a) cos(b) = cos(a+ b) + cos(a− b)
2 et sin(a) cos(b) = sin(a+ b) + sin(a− b)

2

Perméabilité du vide µ0 = 4π × 10−7 H.m−1

Partie I. − Structure du champ magnétique produit par des bobines

On considère un solénoïde d’axe (Oz), composé de spires jointive circulaires de rayon R, iden-
tiques et parcourues par un courant d’intensité I constante. On suppose que les spires sont
jointives et on note n le nombre de spires par mètre.

1. On se place dans le modèle du solénoïde de longueur infinie. Déterminer le champ ma-
gnétique −→B (M) créé en tout point M intérieur au solénoïde. On supposera que le champ
magnétique est nul à l’extérieur du solénoïde. Comment qualifier le champ magnétique
dans le solénoïde ?

2. On considère maintenant une région de l’espace sans courants, dans laquelle le champ
magnétique en tout point M de coordonnées cartésiennes (x, y, z) s’écrit sous la forme :

−→
B (M) = B(x, y, z)−→ez

a) Dessiner l’allure des lignes de champ.
b) Montrer à l’aide des équations locales de la magnétostatique que −→B est uniforme

dans cette région de l’espace.

On considère maintenant une bobine composée de N spires jointives circulaires iden-
tiques de rayon R, d’axe (Oz) et de longueur finie `. Toutes les spires sont parcourues
par le même courant d’intensité constante I ; l’origine O est au centre de la bobine.

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

z•
M

•
O

θ1

θ2
+

`

R

Figure 1

L’expression du champ magnétique −→B (M) créé par la bobine en un point M de l’axe
(Oz) est donnée par :

−→
B (M) = µ0NI

2` (cos θ1 − cos θ2) −→ez

où θ1 et θ1 sont les angles orientés indiqués sur la figure 1, le sens d’orientation + étant
le sens trigonométrique (cf. figure 1).

a) Justifier par les symétries que −→B (M) est colinéaire à −→ez .
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b) Indiquer comment on peut retrouver l’expression du champ magnétique créé par un
solénoïde de longueur infinie obtenue à la question 1.

c) Le point M étant d’abscisse z, déterminer l’expression de −→B (M) en fonction de z,
R, `, N , I et µ0.

d) En déduire −→B (O). Application numérique : on prend ` = 7 cm, R = 4 cm et
N = 1000 (bobine usuelle de laboratoire). Calculer la valeur de I permettant d’avoir
‖
−→
B (O)‖ = 100 mT. Commenter. Indiquer quel(s) problèmes sont susceptibles de se

poser et les solutions techniques qu’on peut y apporter.

Pour la valeur de l’intensité I obtenue, calculer la valeur de ‖−→B‖ en un point M
situé à z = 10 cm du centre O.

On étudie maintenant le champ magnétique créé en un point M situé en dehors de l’axe
(Oz). On utilise les coordonnées cylindriques (r, θ, z) et la base cylindrique (−→er ,−→eθ ,−→ez ).

Pour tout champ vectoriel −→A = Ar
−→er +Aθ

−→eθ +Az
−→ez , on donne :

div−→A = 1
r

∂ (rAr)
∂r

+ 1
r

∂Aθ
∂θ

+ ∂Az
∂z

et
−→rot−→A =

(1
r

∂Az
∂θ
− ∂Aθ

∂z

)
−→er +

(
∂Ar
∂z
− ∂Az

∂r

)
−→eθ +

(
∂(rAθ)
∂z

− ∂Az
∂θ

)
−→ez

z

• y

x
θ

•
M

z

r

O

Figure 2 Coordonnées cylindriques

Le champ magnétique en M s’écrit à priori :
−→
B (M) = Br

−→er +Bθ
−→eθ +Bz

−→ez

3. a) Montrer que Bθ = 0 et que Br = Br(r, z) et Bz = Bz(r, z).
b) Établir que la composante Bz(r, z) est une fonction paire de z.
c) Existe-t-il des lignes de champ magnétique contenues dans le plan xOy ?
d) On admet que pour un point M de coordonnées cylindriques (r, θ, z) très proche du

point O, les composantes Bz(M) et Br(M) ont pour expressions approchées :

Bz(z, r) ≈ B(O)
[

1− z2

D2

]
et Br(z, r) ≈ B(O)α rz

où D est une longueur constante que l’on ne cherchera pas à déterminer et où B(O)
désigne la norme du champ magnétique en O. Déterminer à partir d’une équation
de Maxwell la valeur de la constante α en fonction de D
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Figure 3

Partie II. − Étude d’un champ magnétique tournant

On ajoute une seconde bobine identique à celle étudiée précédemment, placée perpendicu-
lairement à la première, de façon à obtenir la configuration représentée sur la figure 3. Le point
A est placé à d = 10 cm du centre de chaque bobine.

On alimente l’ensemble par une source idéale de tension de force électromotrice sinusoïdale
u(t) = U cos(ω0t). Chaque bobine possède une inductance Lb et une résistance Rb. La bobine
verticale est parcourue par un courant d’intensité i2(t) et la bobine horizontale par un courant
d’intensité i1(t). On se place dans l’A.R.Q.S., ce qui fait que les résultats de la partie I. restent
valables, même si les intensités dépendent du temps.

4. Dessiner le schéma électrocinétique correspondant à ce montage. On y fera figurer les
inductances, résistances et la capacité C.

5. Déterminer :
a) la valeur de R0 pour que le courant i1(t) soit en retard de phase de π/4 sur la tension

u(t) ;
b) la valeur de C pour que le courant i2(t) soit en avance de phase de π/4 sur la tension

u(t).
c) Application numérique avec Lb = 200 mH, Rb = 0,5 Ω et f0 = ω0/2π = 100 Hz.

Calculer R0 et C.
d) Montrer que les intensités parcourant les deux bobines ont la même amplitude

lorsque les conditions précédentes sont remplies.
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6. En déduire que le champ magnétique total −→B (A, t) créé au point A par l’ensemble des
deux bobines s’écrit sous la forme :

−→
B (A, t) = B0

[
cos

(
ω0t−

π

4

)
−→ez + cos

(
ω0t+ π

4

)
−→ey
]

où B0 est une constante donc l’expression n’est pas exigée.
7. Montrer que la norme de −→B (A, t) est constante. Expliciter l’angle que fait le vecteur
−→
B (A, t) avec −→ey et conclure sur la caractéristique du champ magnétique ainsi produit en
A.

Partie III. − Principe du moteur synchrone

Une boussole est formée d’un aimant permanent, solide en forme d’aiguille équivalente à
un petit dipôle magnétique −→m de norme constante m, la direction du vecteur −→m étant indiquée
sur la Figure 4. Sur cette figure, le vecteur −→m a été volontairement placé à côté de la boussole
pour plus de lisibilité. En réalité on le placera au centre de la boussole.

Figure 4

Cette aiguille aimantée peut librement tourner autour d’un axe (∆) formant une liaison
pivot à faible frottement.

Les interactions d’un dipôle magnétique rigide de moment dipolaire −→m soumis à un champ
magnétique extérieur −→B sont décrites par l’énergie potentielle Ep = −−→m.−→B et par le couple
des actions électromagnétiques −→Γ = −→m ∧ −→B .

On place cette boussole au point A du montage décrit sur la Figure 3, l’axe (∆) coïncidant
avec l’axe (Ax). Le montage de la figure 3 est réglé de telle sorte que l’expression du champ
magnétique en A est celui donné à la question 6.

On donne alors à l’aiguille un mouvement de rotation autour de (∆) avec une vitesse
angulaire ω, de sorte que l’angle β(t) = (−̂→ey ,−→m) s’écrive β(t) = ωt + π

4 − α à l’instant t, avec
α ∈]− π, π].

8. a) Calculer la valeur du couple −→Γ (t) exercé par le champ magnétique sur la boussole.
b) À quelle condition sur ω sa valeur moyenne au cours du temps 〈−→Γ 〉 est-elle non

nulle ? Lorsque cette condition est réalisée, donner l’expression de 〈−→Γ 〉 en fonction
de α, B0 et m.

On suppose que la condition sur ω est réalisée dans la suite du problème. Comme
le champ magnétique tourne à une fréquence élevée, on admettra que seule la valeur
moyenne 〈−→Γ 〉 du couple intervient pour étudier la rotation de la boussole.

9
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c) En déduire pour quelles valeurs de α ce dispositif fonctionne en moteur, c’est à dire
lorsque l’action du champ magnétique est d’entraîner une rotation de l’aiguille dans
le même sens.

9. En pratique, la constance de la vitesse angulaire ω de l’aiguille est assurée par les frot-
tements sur son axe de rotation (Ax). Ces frottements solides créent un couple résistant
−→Γr constant, dont on supposera la norme égale à Γr =

mB0

2 , qui contrebalance le couple
des actions électromagnétiques.

a) Représenter 〈−→Γ 〉 · −→ex en fonction de α, pour α variant dans la zone où le dispositif
fonctionne en moteur.

Faire figurer les deux points de fonctionnement possibles sur ce schéma, qui assurent
que la vitesse angulaire ω de la boussole reste constante. en régime permanent.
Préciser les valeurs α1 et α2 correspondantes.

b) Un expérimentateur curieux freine la rotation de l’aiguille à l’aide d’un stylo pendant
une fraction de seconde, puis laisse le système évoluer à nouveau sous l’effet du couple
électromagnétique moyen et des frottements. Montrer que seule une des deux valeurs
de α précédentes de reprendre sa rotation à la vitesse angulaire ω0 à la suite de cette
perturbation. On dit que le fonctionnement moteur est stable dans ce cas.

FIN DU DEVOIR
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