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Correction - DS n°5bis (Centrale - Mines)
Samedi 24 janvier 2026 - Durée 4h

1 Mesure des variations du champ de gravitation terrestre
1. Les deux équations locales de Maxwell-Gauss et de Maxwell-Faraday dans le cadre du

régime stationnaire s’écrivent :

div E⃗ = ρ

ε0
et −→rot E⃗ = −→0 (1)

Les champs de gravitation et électrostatique joue un rôle analogue. La masse volumique
est remplacée par la charge volumique et on a −4π G←→ 1/ε0.

2. Pour tout surface fermée SF le flux du champ de gravitation à travers SF vérifie l’équation
ci-dessous :

Φ(g⃗/SF ) = −4πG Mint

où Mint est la masse contenue à l’intérieur de SF .

3. On considère une tranche de matière d’épaisseur h comprise entre les deux plans z = −h/2
et z = +h/2. Cette tranche est infinie dans les directions Ox et Oy et on suppose que la
masse volumique ρ de la matière qui y est contenue est uniforme

a) En un point M de coordonnées cartésiennes (x, y, z) on peut écrire à priori :

−→g (M) = gx(x, y, z)−→ex + gy(x, y, z)−→ey + gz(x, y, z)−→ez

• Les plan (Mxy) et (Myz) sont des plans de symétrie de la distribution de
masses, contenant M . Il en résulte que :

−→g (M) = gz(x, y, z)−→ez

• La tranche est invariante par toute translation de direction−→ex et toute translation
de direction −→ey . On en déduit que :

−→g (M) = gz(z)−→ez
noté= g(z)−→ez

b) Si M est un point du plan (xOy), plan de symétrie de la tranche, alors −→g (M) =
g(0)−→ez oit appartenir à ce plan. On en déduit que g(0) = 0.

De plus, si M ′ est le point symétrique de M par rapport au plan (xOy), alors :

−→g (M ′) = sym/xOy−→g (M) = −−→g (M)

On en déduit que g(z) est une fonction impaire de z.
c) Méthode 1 : par les équations locales.

div g⃗ = dg

dz
= −4π G ρ(z) =


0 si z < −h/2
−4π G ρ si −h/2 ⩽ z ⩽ h/2
0 si z > h/2
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d’où :

g(z) =


C1 si z < −h/2
−4π G ρz + C2 si −h/2 ⩽ z ⩽ h/2
C3 si z > h/2

Comme g(0) = 0 on en déduit que C2 = 0. De plus, la continuité de g en z = ±h/2
(pas de masses surfaciques) entraîne que :

C1 = 2π G ρh et C3 = − 2π G ρh

On a donc :

g⃗(M) =


2π G ρh−→ez si z < −h/2
−4π G ρz−→ez si −h/2 ⩽ z ⩽ h/2
− 2π G ρh−→ez si z > h/2

Méthode 2 : par le théorème de Gauss.

La surface de Gauss (fermée) SG est un cylindre de génératrices parallèles à Oz,
dont les deux bases ont même surface S et sont placées symétriquement par rapport
au plan xOy : la base supérieure étant d’abscisse z > 0 et la bas inférieure d’abscisse
−z < 0.

−→dSM

g⃗(M)

−→dSM ′

g⃗(M ′)

•
M

•

M ′

Slat

h•
O

z

z

La contribution de la surface latérale Slat au flux est nulle et les contributions des
deux bases sont égales. On obtient donc :

Φ(g⃗/SG) = 2
∫∫

Base Sup
g(z)−→ez .−→ez dSM = 2g(z)S

De plus :

Mint =
ß

2ρSz si 0 ⩽ z ⩽ h/2
ρSh si h/2 < z

On applique le théorème de Gauss pour trouver :

g(z) =
ß
− 4πG ρz si 0 ⩽ z ⩽ h/2
−2πG ρh si h/2 < z

On complète ensuite le résultat par imparité de g(z) pour obtenir la même chose
que dans la méthode 1.
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z

g(z)

−h
2

h
2

2πG ρh

−2πG ρh

4. a) gT (r) > 0 car, comme le poids, le champ gravitationnel converge vers le centre de la
Terre.

b) On applique le théorème de Gauss gravitationnel en choisissant comme surface de
Gauss la sphère de centre O et de rayon r > RT . Comme Mint = mT il vient :

Φ(g⃗T /SG) = − 4π r2 gT (r) = − 4πG mT d’où gT (r) = G
mT

r2

c) On a :

gT (RT + h) = G
mT

(RT + h)2 = G
mT

R2
T︸ ︷︷ ︸

= g0

1Ä
1 + h

RT

ä2 ≈ g0

Å
1− 2h

RT

ã
d’où :

gT (RT + h) ≈ g0

Å
1− 2h

RT

ã
A.N. : g0 = 9,81 m.s−2.

niveau de la mer

−→ez

h •O R
T

Figure 1: Modélisation du plateau chilien.

On se propose de calculer la variation du champ de gravitation terrestre telle qu’elle a
été mesurée par Bouguer en 1738 sur un haut plateau chilien situé à l’altitude h = 1000
m par rapport au niveau de la mer (figure 1). On fait les hypothèses suivantes :

• le plateau est de masse volumique ρP = 2670 kg.m−3 uniforme;
• on le suppose suffisamment étendu dans les directions horizontales pour pouvoir

l’assimiler à une tranche infinie d’épaisseur h pour les calculs qui nous intéressent.
• On note −→ez le vecteur unitaire ascendant dans la direction de la verticale locale au

niveau du plateau.
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5. À la surface du plateau, le champ de gravitation est la somme du champ de gravitation
créé par la boule de rayon RT et de celui créé par la tranche (théorème de superposition).
D’après les questions précédentes on a donc :

g⃗ = − g0

Å
1− 2h

RT

ã
−→ez − 2πG ρP h−→ez = − g−→ez

et donc :
g = g0

Å
1− 2h

RT

ã
+ 2πG ρP h

L’influence de l’éloignement du centre de la Terre a bien pour conséquence de diminuer
la gravité, et celle du plateau de l’augmenter. Finalement :

∆g = g − g0 = 2πG ρP h− g0
2h

RT

A.N. : ∆g = − 1,96.10−3 m.s−2.

Remarque : ∆g < 0 car le terme de gravitation de la boule −g02h/RT l’emporte sur le
terme dû par le plateau 2πGρP h.

6. (R.P.) La période d’un pendule simple est donnée par :

T = 2π

 
L

g

Au niveau de la mer, g = g0 et T = T0 = 1s. Sur le plateau chilien : g = g0 + ∆g avec
|∆g| ≪ g0 et la période devient :

T = 2π

 
L

g0 + ∆g
= 2π

 
L

g0︸ ︷︷ ︸
=T0

1Ä
1 + ∆g

g0

ä1/2 ≈ T0

Å
1− ∆g

2g0

ã
(∗)

On remarque que T > T0.

Déterminons maintenant les intervalles dans lesquels il y a 100% de chance qu’une mesure
de T (resp.de T0) soit située.

• Comme T0 = 1 s (ce qui correspond à l’espérance mathématique de T0), la demi-
amplitude pour T0 sera ∆T0 = 1 × 10−5. L’intervalle de confiance de T0 sera donc
:

I = [1− 10−5, 1 + 10−5]

• L’espérance mathématique de T est donnée par la formule (∗) ci-dessus; elle vaut
1,000100 s et la demi-étendue associée est ∆T = 1,000100 × 10−5. L’intervalle J
dans lequel toute mesure de T a 100% de chance de tomber est donc :

J = [ 1,000100× (1− 10−5), 1,000100× (1 + 10−5) ]

Afin que la mesure de l’écart entre les deux périodes soit significatif, il est nécessaire
que les deux intervalles I et J soient disjoints. Or :

1 + 10−5 < 1,000100× (1− 10−5)
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car :
1, 00001 < 1, 000899

Les deux intervalles de confiance sont donc disjoints et on peut donc conclure, qu’avec ses
moyens de l’époque, Bouguer était en capacité de mesurer l’écart entre les deux périodes
et de déterminer la variation de g.

Remarque : pour en savoir plus sur l’aventure de Bouguer, on pourra se reporter aux sites :

• http://culturesciencesphysique.ens-lyon.fr/ressource/pendule-pesanteur-altitude.xml#ref2

• http://www.annales.org/archives/cofrhigeo/bouguer.html

2 Piéger une particule. Extrait Mines-Pont MP 2015

1. On sait que F⃗ = q E⃗ = − q
−−→grad V . En utilisant les coordonnées cartésiennes il vient :

a x = − q
∂V

∂x
; a y = − q

∂V

∂y
et b z = − q

∂V

∂z
(1)

Comme en dehors des charges, V satisfait à l’équation de Laplace, nous avons :

∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = − a

q
− a

q
− b

q
= 0 d’où b = −2a

Si on reprend les équations (1) on obtient alors par intégration :

V (x, y, z) = − a

q
(x2 + y2)− b

q
z2 + α = α− a

q
(x2 + y2 − 2z2)

d’où en posant β = −a/q, on obtient le résultat demandé.

De plus, l’énoncé indique que (sachant que z0 = r0/
√

2) :

V (0, 0, z0) = α− 2β z2
0 = α− β r2

0 = 0 et pour x2 + y2 = r2
0 et z = 0, α + βr2

0 = V0

d’où : ß
α− β r2

0 = 0
α + βr2

0 = V0

donc :

α = V0
2 et β = V0

2r2
0

2. Équipotentielles dans le plan xOz :
Le plan xOz est tel que y = 0, le potentiel a pour expression :

V (x, 0, z) = V0
2r2

0
(x2 − 2z2 + r2

0)

Cherchons l’équation de l’équipotentielle V (x, 0, z) = V1. En posant k = 2V1/V0 nous
obtenons l’équation :

(k − 1) r2
0 = x2 − 2z2

Plusieurs cas se présentent :
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• Si k = 1 on obtient les deux droites x = ±
√

2 z.
• Si k < 1 alors on met l’équation précédente sous la forme : 2z2 = x2 + r2

0(1 − k),
c’est à dire :

z = ± 1√
2

»
x2 + r2

0(1− k) = fk(x)

L’axe Oz est axe de symétrie de la courbe équipotentielle (parité de la fonction
fk), de même que l’axe Ox. Les courbes ont pour asymptote z = ±x/

√
2 lorsque

x −→ ±∞.
• Si k > 1 alors :

x = ±
»

2z2 + (k − 1)r2
0 = gk(z)

L’axe Oz est axe de symétrie (à cause du ±), de même qe l’axe Ox par parité de
la fonction gk(z). Les courbes ont pour asymptote les droites x = ±

√
2 z.

On obtient la représentation de la figure 2 à gauche. Les lignes de champ sont
perpendiculaires aux équipotentielles.

Équipotentielles du plan xOy

C’est ici plus facile car le plan xOy est tel que z = 0 et le potentiel a pour expression :

V (x, y, 0) = V0
2r2

0
(x2 + y2 + r2

0)

L’équipotentielle V (x, y, 0) = V1 a pour équation :

x2 + y2 = (k − 1)r2
0 avec k = 2V1

V0

Seules les valeurs k > 1 sont permises et on obtient alors des cercles de centre O et de
rayon

√
k − 1. Les lignes de champ sont orthogonales à ces cercles et ce sont donc des

droites passant par O : figure 2 à droite.

Figure 2: Équipotentielles et lignes de champ du piège électrostatique
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3. On a :
E⃗ = −−−→grad V = V0

r2
0

(−x−→ux − y−→uy + 2z−→uz) et F⃗ = q E⃗

On remarque que F⃗ = 0⃗ en O(0, 0, 0), ce qui correspond bien à une position d’équilibre.
Le principe fondamental de la dynamique (noté PFD par la suite) conduit aux trois
équations (on note m la masse de la particule) :

ẍ + qV0
mr2

0
x = 0 ; ÿ + qV0

mr2
0

y = 0 et z̈ − 2qV0
mr2

0
z = 0

• Si qV0 > 0 alors les équations en x et y sont des oscillateurs harmoniques (noté
OH par la suite) mais pas celle en z : il y aura donc une instabilité selon l’axe Oz
puisque z sera une combinaison linéaire de ch et de sh.

• Si qV0 < 0 alors c’est l’équation en z qui est un OH mais pas les deux autres. Cette
fois c’est x et y qui seront des combinaisons linéaires de ch et de sh.

4. Il faut ajouter à la force électrique la force magnétique :
−→
Fm = −e−→v ∧

−→
B0 = −eB0 (−ẋ−→uy + ẏ−→ux)

Le PFD conduit à :

ẍ− eV0
mpr2

0
x + eB0

mp
ẏ = 0 ; ÿ − eV0

mpr2
0

y − eB0
mp

ẋ = 0 et z̈ + 2eV0
mpr2

0
z = 0

c’est à dire :

ẍ− ω2
0 x + ωc ẏ = 0 ; ÿ − ω2

0 y − ωc ẋ = 0 et z̈ + 2ω2
0 z = 0

En posant ξ = x + iy on obtient les deux équations différentielles :

ξ̈ − i ωc ξ̇ − ω2
0 ξ = 0 et z̈ + 2ω2

0 z = 0

L’équation en z est un OH ce qui assure le confinement de l’antiproton dans la direction
de Oz. Cherchons les solutions de pour ξ; l’équation caractéristique s’écrit :

X2 − iωc X − ω2
0 = 0 ∆ = −ω2

c + 4 ω2
0

Afin d’assurer le confinement selon les axes Ox et Oy, il faut des solutions sinuoïdales
en x(t) et y(t), ce qui implique que les racines de l’EC soient imaginaires pures. Il est
donc nécessaire que :

∆ < 0 ⇐⇒ 2ω0 < ωc d’où 2mpω0
e

< B0 soit Bmin = 2mpω0
e

A.N. : Bmin = 8,2.10−2 T. Le champ magnétique B0 = 1 T appliqué est donc largement
suffisant.

5. On calcule ωc = 9,4.107 rad.s−1 et ω0 = 3,8.106 rad.s−1. On a donc 2ω0 ≪ ωc et la
condition de la question précédente est bien vérifiée. Les deux racines de l’équation
caractéristique sont donc :

X1 = i
ωc

2 + i

√
ω2

c − 4ω2
0

2 ≈ iωc
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et

X2 = i
ωc

2 − i

√
ω2

c − 4ω2
0

2 = i
ωc

2 − i
ωc

2

 
1− 4 ω2

0
ω2

c

≈ i
ωc

2 − i
ωc

2

Å
1− 2 ω2

0
ω2

c

ã
= i

ω2
0

ωc

On pose alors ω1 = ω2
0

ωc
≪ ω0 ≪ ωc, ce qui donne pour solutions :

ξ(t) = a1 eiωct + b1 eiω1t et z(t) = a2 cos(
√

2ω0t) + b2 sin(
√

2ω0t)

Le mouvement dans le plan (xOy) est donc une superposition d’un mouvement sinusoïdal
de pulsation ωc donc rapide et d’un mouvement sinusoïdal de pulsation ω1 très lent. Le
mouvement sur l’axe Oz est un mouvement sinusoïdal de pulsation

√
2ω0 lent.

3 À propos de champs magnétiques. D’après Mines Ponts PSI
2016 et MP 2019

Partie I − Réalisation d’un champ magnétique uniforme

1. Voir le cours

2. Le plan (M,−→er ,−→ez ) est un plan d’antisymétrie des courants, donc un plan de symétrie de
−→
B contenant M . Le champ magnétique en M appartient donc à ce plan de symétrie ce
qui implique Bθ = 0.

De plus, il y a invariance de la distribution de courant par toute rotation aurour de Oz,
ce qui entraîne que les fonctions Bhr et Bhz ne dépendent pas de l’angle θ.

Enfin, le plan (Oxy)⊥Oz est un plan de symétrie des courants, donc un plan d’antisymétrie
de −→B . Si M(r, θ, z) et M ′(r, θ,−z) sont deux points symétriques par rapport à ce plan,
alors : −→

Bh(M ′) = − symOxy

−→
Bh(M)

d’où :
Brh(r,−z)−→er + Bhz(r,−z)−→ez = − [ Brh(r, z)−→er −Bhz(r, z)−→ez ]

Il en résulte que (projection sur −→ez ) Bhz(r,−z) = Bhz(r, z). La fonction Bhz(r, z) est
bien paire par rapport à la coordonnée z.

On montre qu’en un point M situé sur l’axe Oz, à l’abscisse z, le champ magnétique−→
Bh(z) créé par les bobines d’Helmholtz s’écrit :

−→
Bh(z) = N

−→
B0

{ñ
1 +
Å

z

R
− 1

2

ã2ô−3/2

+
ñ
1 +
Å

z

R
+ 1

2

ã2ô−3/2}

3. Le champ magnétique créé par un fil infini parcouru par un courant I est donné par
(théorème d’Ampère) : −→B = µ0I

2πr
−→eθ . Par analogie dimensionnelle, la quantité B0 = ∥−→B0∥

est donc donnée par :

B0 = µ0I

2R
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4. On pose X = z/R. Les termes en X et en X3 se compensent et il ne reste dans le
développement limité que :

−→
Bh(z) = NB0

8
5
√

5

ï
2− 288

125
z4

R4

ò
−→ez

(Sur l’axe (Oz), le champ magnétique est bien sûr colinéaire à −→ez car si M est sur cet axe,
le plan (M,−→eθ ,−→ez ) est un autre plan d’antisymétrie des courants de sorte que Brh = 0).

En O, z = 0 et on a donc :

Bh(z = 0) = NB0
8

5
√

5
× 2

Il s’ensuit que la variation relative du Bh(z) au voisinage de z = 0 s’écrit :∣∣∣∣Bh(z)−Bh(0)
Bh(0)

∣∣∣∣ = 144
125

z4

R4 < 2/100

ce qui implique :

|z| < R

Å 125
72× 100

ã1/4
AN= 5,4 cm

Il s’agit donc d’une zone relativement étendue de part et d’autre de O.

On calcule Bh(z = 0) = NB0
16

5
√

5
= 1,2 mT

5. Il y a N tours de fil par bobine donc 2N tours de fil au total. La longueur totale de fil
est donc 2N × 2πR = 94 m et la résistance totale du fil est donc :

Rtot = 2N × 2πR

γ a2 = 0,39 Ω

On en déduit que la puissance dissipée par effet Joule dans les deux bobines s’écrit :

PJ = RtotI
2 ≈ 6 W

6. Manifestement b0(z) = Bh(z) (valeur sur l’axe Oz) et c0(z) = 0 puisque la composante
radiale de −→Bh s’annule sur l’axe.

En utilisant div−→Bh = 0 et −→rot−→Bh = −→0 on obtient :

1
r

∂(r2c1(z))
∂r

+ ∂(Bh + rb1(z) + r2b2(z))
∂z

= 0 donc 2c1(z) + dBh

dz
+ r

db1
dz

+ r2 db2
dz

= 0

et
∂Bhr

∂z
− ∂Bhz

∂r
= 0 d’où r

dc1
dz

(z)− b1(z)− 2rb2(z) = 0 (2)

Ces équations étant valables pour tout r et z (à condition que r soit suffisamment petit),
on fait tendre r vers 0 pour obtenir :

b1(z) = 0 et et c1(z) = − 1
2

dBh

dz
(z)

Finalement, sachant que b1(z) = 0, l’équation (2) conduit à :

dc1
dz

(z)− 2b2(z) = 0 soit b2(z) =
1
2

dc1
dz

(z) = − 1
4

d2Bh

dz2 (z)
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7. Applications numériques. Brh(r, z) = − r
2

dBh

dz
(z)− r2

4
d2Bh

dz2 (z). Or Bh(z) = NB0
8

5
√

5

î
2− 288

125
z4

R4

ó
,

donc Brh(r, 0) = 0. On retrouve bien que la composante radiale est nulle en O (en effet,
d’après Q.2, Brh(r, z) est impaire par rapport à z).
En z = 1 cm, calculons tout d’abord la valeur numérique du terme du premier ordre (1)
en r de la composante radiale. D’après la question précédente :

B
(1)
hr (r, z) = −r

2
dBh

dz
(z) = µ0NI

2R

r

2
8

5
√

5
288× 4

125
z3

R4

On trouve Bhr = 5,5× 10−5 mT. La composante du second ordre (2) en r s’écrit :

B
(2)
hr (r, z) = −r2

4
d2Bh

dz2 (z) = µ0NI

2R

r2

4
8

5
√

5
288× 4× 3

125
z2

R4 =
3
2

r

z
B

(1)
hr (r, z)

Finalement,
Bhr(r, z) = 1.4× 10−4 mT ≪ 1, 2 mT

On peut donc conclure que la composante radiale de −→B est nulle ou bien négligeable

devant la composant longitudinale Bhz. Autour du point O, le champ magnétique est
donc quasiment dirigé selon −→ez en tout point.

Partie II − Mesure des caractéristiques d’une boussole

8. C’est lorsque le moment magnétique −→m est colinéaire au champ magnétique −→B (O) et de
même sens. −→m est donc dirigé selon +−→ez (en supposant I > 0).

9. On a le schéma suivant :

y

z•Ox −→
Bh(O)

−→m
θ

On a :
−→m = m (cos θ−→ez − sin θ−→ey) donc −→Γ = −m NB0

16
5
√

5
sin θ−→ex

Le théorème du moment cinétique (TMC) appliqué à la boussole donne alors, dans la
limite des petits mouvements où sin θ ≈ θ :

J θ̈ = − m NB0
16

5
√

5
θ donc θ̈ + 16 m NB0

5
√

5 J
θ = 0

Il s’agit d’un oscillateur harmonique de période propre :

τosc = 2π

 
5
√

5J

16 mNB0
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10. On sait que [m] = A.m2 et J = kg.m2. On en déduit que [κ] = A.kg−1. On a d’autre
part :

κ = 4π2

τ2
osc

5
√

5
16NB0

AN= 3,6× 105 A.kg−1

Partie III. − Principe du moteur synchrone

11. Si on remarque que :

cos
(

ω0t± π

4

)
= cos(ω0t) 1√

2
∓ sin(ω0t) 1√

2

on obtient :

∥
−→
B (O, t)∥2 = B2

0
2

[
(cos(ω0t) + sin(ω0t))2 + (cos(ω0t)− sin(ω0t))2 ] = B2

0

et, en notant φ(t) l’angle que fait le vecteur −→B (O, t) avec −→ey à l’instant t, on a :

φ(t) = ω0t + π

4

On peut donc écrire plus simplement :
−→
B (O, t) = B0 [ sin (φ) −→ez + cos (φ) −→ey ]

Ainsi le vecteur −→B (O, t) est un vecteur tournant dans le sens trigonométrique, avec la
vitesse angulaire ω0. Sa norme reste constante au cours de la rotation.
−→
B (O, t) peut être généré à partir de 2 bobines d’axes respectifs −→e z et −→e y, et alimentées
par des courants sinusoïdaux déphasés de π

2 .

12. a) À l’instant t on a :

−→m = m cos
(

ωt + π

4 − α
)
−→ey + m sin

(
ωt + π

4 − α
)
−→ez

On calcule produit vectoriel avec le champ magnétique tournant dont l’expression
est donnée à la question 6. et on utilise le formulaire donné en début d’énoncé pour
trouver ;

−→Γ (t) = mB0
2

[
cos ( (ω + ω0)t− α) + cos

(
(ω − ω0)t + π

2 − α
)

− sin
(

(ω + ω0)t + π

2 − α
)
− sin ( (ω − ω0)t− α)

]
−→ex

b) Si ω ̸= ω0 les valeurs moyennes de tous les cos et sin sont nulle. La seule possibilité
pour qu’elles ne soient pas nulles est ω = ω0. Les valeurs moyennes des termes en
cos( (ω + ω0)t + ...) et sin( (ω + ω0)t + ...) restant nulles, il ne reste alors que :

ω = ω0 et ⟨−→Γ ⟩ = mB0 sin α−→ex

c) On veut que ⟨−→Γ ⟩.−→ex > 0 et il s’ensuit que sin α > 0, ce qui impose α ∈]0, π[

13. a) Le schéma est donné ci-dessous :
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⟨
−→Γ ⟩.−→ex

0
α

π

mB0
2

mB0

π/2

•

α1

•

α2

Si on applique le théorème du moment cinétique à la boussole, sachant que ω =
Cste, on obtient (en désignant par J le moment d’inertie de la boussole par rapport
à l’axe de rotation Ox) :

J ω̇ = 0 = ⟨−→Γ ⟩.−→ex −
mB0

2 d’où sin α = 1
2

ce qui donne les deux solutions α1 = π/6 et α2 = π − π/6 = 5π/6.
b) Provisoirement on a donc ω < ω0 puisque la boussole est ralentie, donc la boussole

va "prendre du retard" par rapport au champ tournant, et α va donc légèrement
augmenter.

• Si le point de fonctionnement était situé en α1, d’après la figure, le fait qu’α
augmente va conduire à une augmentation du couple moteur Γ, de sorte que la
boussole va "rattraper son retard".

• Si le point de fonctionnement était situé en α2, d’après la figure, le fait qu’α
augmente va conduire à une diminution du couple moteur Γ, de sorte que la
boussole va "prendre encore davantage de retard" et va se désynchroniser avec
le champ magnétique. La boussole va rapidement s’arrêter de tourner dans ce
cas.

Finalement, seul α1 est donc une position de fonctionnement moteur stable.

Partie III − Pôles géographiques et magnétiques

14. C’est parce que le moment magnétique de la boussole s’aligne sur la composante horizontale
du champ magnétique local qui est dirigé vers le nord magnétique. Cet équilibre est stable
si −→M est dans le même sens que −→B

15. On utilise la formule donnée par l’énoncé pour obtenir :
−→
M = M0

−→ez = M0 cos θ−→er −M0 sin θ−→eθ et −→R = RT
−→er

ce qui conduit à :

Br = −→B .−→er = µ0
4π

3(−→R.−→er )(−→M.
−→
R )−R2

T (−→M.−→er )
R5

T

= µ0M0
4π

2 cos θ

R3
T

Bθ = −→B .−→eθ = µ0
4π

3(−→R.−→eθ )(−→M.
−→
R )−R2

T (−→M.−→eθ )
R5

T

= µ0M0
4π

sin θ

R3
T

et Bφ = −→B .−→eφ = 0. On retrouve donc la formule du cours :

−→
B (P ) = µ0M0

4π R3
T

(2 cos θ−→er + sin θ−→eθ )
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16. Les lignes de champ magnétique étant dirigées du Sud vers le Nord, on a (en se souvenant
de l’allure des ligne de champ d’un dipôle données dans le cours) : M0 < 0. Pour s’en
convaincre, on peut aussi regarder la direction et le sens de −→B à l’équateur, c’est à dire
pour θ = π/2 :

−→
BE = µ0M0

4π R3
T

−→eθ (θ = π/2) = − µ0M0
4π R3

T

−→ez

Or ce champ doit être dirigé vers le nord, ce qui impose M0 < 0. On en déduit que :

BE = µ0|M0|
4πR3

T

d’où M0 = −4πR3
T BE

µ0

AN= − 7,9× 1022A.m2

• Au pôle magnétique nord, θ = 0 et :

|BN | =
2µ0|M0|
4πR3

T

= 2BE = 6,0× 10−5 T

• Au pôle magnétique sud, θ = π et l’intensité du champ magnétique est la même (en
valeur absolue) :

|BS | =
2µ0|M0|
4πR3

T

= 2BE = 6,0× 10−5 T

17. On peut faire un schéma global avec les lignes de champ. Attention, sur ce schéma, −→M
est orienté vers le haut, ce qui définit l’axe z et l’angle θ, mais comme −→M = −M0

−→e z, les
lignes de champ magnétiques partent "vers le bas"!

On fait un schéma pour l’hémisphère nord, localement au voisinage du sol. On a donc
θ ∈ ]0 π/2[, donc cos θ > 0 et sin θ > 0. Cependant nous avons M0 < 0, ce qui conduit au
schéma ci-dessous :

Sol

−→eθ

−→er

−→
B

−→eN
I

Nord Sud

13



MP1&2 Janson de Sailly Correction - DS n°5bis - Mécanique

On voit donc que I < 0 dans l’hémisphère nord. On a de plus :

tan(I) = −Br

Bθ
= − 2 cos θ

sin θ
= − 2 cos(π/2− λ)

sin(π/2− λ) = −2 tan λ

λ (en °)

I (en °)

0

0

−90

−75

−60

−45

−30

−15

90

75

60

45

30

15

−90 −75 −60 −45 −30 −15 907560453015

pôle sud

pôle nord

À proximité des pôles, la composante horizontale devient très faible devant la composante
verticale et la stabilité de la direction n’est plus assurée par fluctuation du champ horizontal
très sensible eu égard à la faiblesse de sa valeur. Si le soleil est visible, on peut déterminer
avec une boussole si on est dans l’hémisphère nord (en particulier aux latitudes grandes
et moyennes : le soleil est du côté sud alors que c’est l’inverse dans l’autre hémisphère).
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