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Correction - DS n°5bis (Centrale - Mines)
Samedi 24 janvier 2026 - Durée 4h

1 Mesure des variations du champ de gravitation terrestre

1. Les deux équations locales de Maxwell-Gauss et de Maxwell-Faraday dans le cadre du
régime stationnaire s’écrivent :

divE=" et 1tE=T17 (1)
€0

Les champs de gravitation et électrostatique joue un role analogue. La masse volumique
est remplacée par la charge volumique et on a —471 G +— 1/ey.

2. Pour tout surface fermée S le flux du champ de gravitation a travers Sg vérifie I’équation
ci-dessous :

’ ®(§/Sr) = —AnG Min ‘

ou Myt est la masse contenue a l'intérieur de Sp.

3. On consideére une tranche de matiere d’épaisseur h comprise entre les deux plans z = —h /2
et z = +h/2. Cette tranche est infinie dans les directions Oz et Oy et on suppose que la
masse volumique p de la matiére qui y est contenue est uniforme

a) En un point M de coordonnées cartésiennes (z,y, z) on peut écrire a priori :

T(M) = go(2,y,2) &5 + gy (2,9, 2) & + g:(7,y,2) €2

o Les plan (Mzy) et (Myz) sont des plans de symétrie de la distribution de
masses, contenant M. Il en résulte que :

?(M) = gz(xvya Z)e—z>

e Latranche est invariante par toute translation de direction €2 et toute translation
de direction ?y. On en déduit que :

b) Si M est un point du plan (zOy), plan de symétrie de la tranche, alors ?(M ) =
9(0) 2 oit appartenir & ce plan. On en déduit que g(0) = 0.

De plus, si M’ est le point symétrique de M par rapport au plan (zOy), alors :

(M) =sym/z0y g (M) = — ¢ (M)

On en déduit que g(z) est une fonction impaire de z.

c) Méthode 1 : par les équations locales.

d 0 si z< —h/2
divgzd—g:—4wGp(z): —4AnGp si —h/2<z<h/2
i 0 si 2> h/2
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d’ou :

Cl si 2z < —h/2
g(z) =< —4nGpz+Cy si —h/2<z<h/2
Cs si z> h/2

Comme ¢(0) = 0 on en déduit que Cy = 0. De plus, la continuité de g en z = +h/2
(pas de masses surfaciques) entraine que :

Ci=2nGph et C3=—-27wGph

On a donc :

omGphe, si z<—h/2
GIM)={ —4rGpze; si —h/2<z<h/2
—2rGphe, si z>h/2

Méthode 2 : par le théoréeme de Gauss.

La surface de Gauss (fermée) S est un cylindre de génératrices paralleles a Oz,
dont les deux bases ont méme surface S et sont placées symétriquement par rapport
au plan xOy : la base supérieure étant d’abscisse z > 0 et la bas inférieure d’abscisse

—z < 0.
™
900 | |t
; E
gun|

M l o

La contribution de la surface latérale S},; au flux est nulle et les contributions des
deux bases sont égales. On obtient donc :

o(G/Sa) =2 [[  gla)@a dsh =29(2)8
Base Sup

De plus :
A _{QpSz si 0<2<h/2
mT O pSh si b2 < 2

On applique le théoreme de Gauss pour trouver :

()_{—47erz si 0<2z< h/2
FE =\ —2nGph s h/2 < z

On complete ensuite le résultat par imparité de g(z) pour obtenir la méme chose
que dans la méthode 1.
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4.

a) gr(r) > 0 car, comme le poids, le champ gravitationnel converge vers le centre de la
Terre.

b) On applique le théoréeme de Gauss gravitationnel en choisissant comme surface de
Gauss la sphere de centre O et de rayon r > Rp. Comme M,y = myp il vient :

®(gr/Sq) = —4Anr? gr(r) = —4xGmy don |gr(r) = G%

c) Ona:
mr mr 1 2h
gr(Rr+h)=G——————==G— ———5 ~ g <1——>
Rt + h)? R2 h\2 R
(Br ) R/—/T (1+E) 4

=90

Figure 1: Modélisation du plateau chilien.

On se propose de calculer la variation du champ de gravitation terrestre telle qu’elle a
été mesurée par Bouguer en 1738 sur un haut plateau chilien situé a I'altitude h = 1000
m par rapport au niveau de la mer (figure 1). On fait les hypothéses suivantes :

« le plateau est de masse volumique pp = 2670 kg.m ™3 uniforme;

e on le suppose suffisamment étendu dans les directions horizontales pour pouvoir
I’assimiler a une tranche infinie d’épaisseur h pour les calculs qui nous intéressent.

e On note e_z> le vecteur unitaire ascendant dans la direction de la verticale locale au
niveau du plateau.
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5. A la surface du plateau, le champ de gravitation est la somme du champ de gravitation
créé par la boule de rayon Ry et de celui créé par la tranche (théoréme de superposition).
D’apres les questions précédentes on a donc :

o 2h
g=—49o0 (1_RT) e_z>—27TGpphe_z>:—ge_z>

et donc :

2h
g= go (1——) +27G pph
Rr

L’influence de I’éloignement du centre de la Terre a bien pour conséquence de diminuer
la gravité, et celle du plateau de I'augmenter. Finalement :

2h
Ag:g—go:%GpPh—goR—
T

AN.: Ag=—1,96.10"3 m.s2.

Remarque : Ag < 0 car le terme de gravitation de la boule —gg2h/ Ry I'emporte sur le
terme di par le plateau 2rGpph.

6. (R.P.) La période d’'un pendule simple est donnée par :

T =27 £
V g9

Au niveau de la mer, g = gg et T'= Ty = 1s. Sur le plateau chilien : g = g9 + Ag avec
|Ag| < go et la période devient :

TP I S S WY (R-Y) B
90+ Ag 90, (14 22) / 240
S—— go

=To
On remarque que T > Tj.

Déterminons maintenant les intervalles dans lesquels il y a 100% de chance qu’une mesure
de T (resp.de Tp) soit située.

e Comme Ty = 1 s (ce qui correspond a l'espérance mathématique de 1), la demi-
amplitude pour Ty sera Ag, =1 X 107°. L’intervalle de confiance de Ty sera donc

I=[1-10""1+1077]

o L’espérance mathématique de T est donnée par la formule (x) ci-dessus; elle vaut
1,000100 s et la demi-étendue associée est Ap = 1,000100 x 10~°. L’intervalle J
dans lequel toute mesure de T" a 100% de chance de tomber est donc :

J =[1,000100 x (1 —107°),1,000100 x (1 +107°)]

Afin que la mesure de ’écart entre les deux périodes soit significatif, il est nécessaire
que les deux intervalles I et J soient disjoints. Or :

1+107° < 1,000100 x (1 —107°)
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car :

1,00001 < 1,000899

Les deux intervalles de confiance sont donc disjoints et on peut donc conclure, qu’avec ses
moyens de ’époque, Bouguer était en capacité de mesurer ’écart entre les deux périodes

et de déterminer la variation de g.

Remarque : pour en savoir plus sur 'aventure de Bouguer, on pourra se reporter aux sites :

o http://culturesciencesphysique.ens-lyon.fr/ressource/pendule-pesanteur-altitude.xmi# ref2

o hitp://www.annales.org/archives/cofrhigeo/bouguer.html

2 Piéger une particule. Extrait Mines-Pont MP 2015

~ - —
1. On sait que F'=qF = —ggrad V. En utilisant les coordonnées cartésiennes il vient :
oV aV oV
=—q— ; =—q— et bz=—q— 1
azx 95, ay ay et bz 45, (1)

Comme en dehors des charges, V satisfait a I’équation de Laplace, nous avons :

V9V RV a

a
0x? + oy? * 072 g q

Si on reprend les équations (1) on obtient alors par intégration :

b o

a a
V($7yaz):_5(x2+y2)_ 5Z +a=«a— 5(372"‘3/2—222)

d’olt en posant § = —a/q, on obtient le résultat demandé.

De plus, I’énoncé indique que (sachant que zg = 79/v/2) :

V(O,O,zo):a—Qﬁz(Q):a—ﬁr%:O etpouer—i—yz:rg et z =0, oz—i-Brg:VO

d’ou :
{a—ﬁr% =0
a+prd = W
donc :
v
a=-2 et B:LOZ
2 2rg

2. Equipotentielles dans le plan 20z :

Le plan 2Oz est tel que y = 0, le potentiel a pour expression :

Yo

V(z,0,2) = - ( 2—222+r8)

2rg

Cherchons I’équation de 1’équipotentielle V (x, 0, 2)

obtenons ’équation :

(k—1)rg = 2? - 22°

Plusieurs cas se présentent :

Vi. En posant k = 2V /Vj nous
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e Si k=1 on obtient les deux droites z = ++/2 z.

e Si k < 1 alors on met 1’équation précédente sous la forme : 222 = 22 + r¢(1 — k),
c’est a dire :

L’axe Oz est axe de symétrie de la courbe équipotentielle (parité de la fonction
fx), de méme que l'axe Oz. Les courbes ont pour asymptote z = +x/ V2 lorsque
r — t+oo.

e Sik>1alors:

x = :l:\/222 + (k= 1)rd3 = gi(2)

L’axe Oz est axe de symétrie (a cause du +), de méme qe 'axe Oz par parité de
la fonction gx(z). Les courbes ont pour asymptote les droites = +v/2 2.

On obtient la représentation de la figure 2 a gauche. Les lignes de champ sont

perpendiculaires aux équipotentielles.

Equipotentielles du plan 20y

C’est ici plus facile car le plan Oy est tel que z = 0 et le potentiel a pour expression :

Vo
V(.’L’,y, 0) = % (xQ + y2 + r%)

L’équipotentielle V(z,y,0) = V; a pour équation :

2
2?4+ y* = (k- 1)rf avec kzﬂ
Vo

Seules les valeurs k > 1 sont permises et on obtient alors des cercles de centre O et de
rayon vk — 1. Les lignes de champ sont orthogonales a ces cercles et ce sont donc des
droites passant par O : figure 2 a droite.

h 2
Y e

—-—'—'_'_'_'._'_Fr

F 3
F 3
¥
W
]

Figure 2: Equipotentielles et lignes de champ du piege électrostatique
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3. Ona: v
- — o -
E:—gradV:—g(—:c@—y@—i-Qzu_;) et FF=qFE

7o

On remarque que F=0en 0(0,0,0), ce qui correspond bien & une position d’équilibre.
Le principe fondamental de la dynamique (noté PFD par la suite) conduit aux trois
équations (on note m la masse de la particule) :

qaVo 2qV

.
P00 =0 ; G+ L0y=0 et - LP2=0
mrg mrg mrg

e Si gVh > 0 alors les équations en z et y sont des oscillateurs harmoniques (noté
OH par la suite) mais pas celle en z : il y aura donc une instabilité selon I'axe Oz
puisque z sera une combinaison linéaire de ch et de sh.

e SigVy < 0 alors c’est ’équation en z qui est un OH mais pas les deux autres. Cette
fois c’est x et y qui seront des combinaisons linéaires de ch et de sh.

4. Il faut ajouter a la force électrique la force magnétique :
— —
Fo=—e ¥ A By = —eBy (=it + 1 uz)

Le PFD conduit a :

eV eB eVt eB 2eV;
— e =0 sy =0 et Pt ——22=0
mpTy mp mpTg mp mpTg
c’est a dire :
i—wirtwey=0 ; §-wly—wei=0 et 2+2}z=0

En posant £ = x + iy on obtient les deux équations différentielles :

§—iwc§—w(2)§:0 et 2—|—2w8z:0

L’équation en z est un OH ce qui assure le confinement de I'antiproton dans la direction
de Oz. Cherchons les solutions de pour &; ’équation caractéristique s’écrit :

X2 —iwe X —w2 =0 A=-w?+4w?

Afin d’assurer le confinement selon les axes Ox et Oy, il faut des solutions sinuoidales
en z(t) et y(t), ce qui implique que les racines de 'EC soient imaginaires pures. Il est
donc nécessaire que :

2mpwo

A< < 2wy <w. dou < By soit | Bpin = ——

AN.: By, = 8,2.1072 T. Le champ magnétique By = 1 T appliqué est donc largement
suffisant.

5. On calcule w. = 9,4.107 rad.s™! et wy = 3,8.10% rad.s™'. On a donc 2wy < w. et la
condition de la question précédente est bien vérifiée. Les deux racines de 1’équation
caractéristique sont donc :

w2 — 4w

LW .
Xy =i—+i+==

5 5 W
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et

XQZZ——zizz——z— 1—4—~z——z—

we L yJwi—dwi we wd We <1_2 2) iw%
2 2 2 2 w? 2 2

c

2
On pose alors wy = %2 <K wy K We, ce qui donne pour solutions :
E(t) = ay et + by et et z(t) = ag cos(v2wot) + by sin(v/2wot)

Le mouvement dans le plan (xOy) est donc une superposition d’un mouvement sinusoidal
de pulsation w, donc rapide et d’'un mouvement sinusoidal de pulsation w; tres lent. Le
mouvement sur I’axe Oz est un mouvement sinusoidal de pulsation /2w lent.

3 A propos de champs magnétiques. D’aprés Mines Ponts PSI
2016 et MP 2019

Partie I — Réalisation d’un champ magnétique uniforme

1. Voir le cours

2. Le plan (M, ?T, e_;) est un plan d’antisymétrie des courants, donc un plan de symétrie de

contenant M. Le champ magnétique en M appartient donc a ce plan de symétrie ce
qui implique By = 0.

De plus, il y a invariance de la distribution de courant par toute rotation aurour de Oz,
ce qui entraine que les fonctions By, et Bj, ne dépendent pas de I'angle 6.

Enfin, le plan (Ozy) LOz est un plan de symétrie des courants, donc un plan d’antisymétrie
de B. Si M(r,0,z) et M'(r,0,—z) sont deux points symétriques par rapport a ce plan,

alors : _ _
Bh(M/) = _SymO:cth(M)
d’ou :
By (r,—2) & + Bp.(r,—2) € = — [ Bu(r, 2) & — Bp.(r, 2) €1 |
Il en résulte que (projection sur e3) Bp.(r,—z) = By.(r,z). La fonction By, (r,z) est

bien paire par rapport a la coordonnée z.

On montre qu’en un point M situé sur I'axe Oz, a 'abscisse z, le champ magnétique
By, (z) créé par les bobines d’Helmholtz s’écrit :
+ 1+ <Z + 1>2 o
R 2

s (oo (5-2)

3. Le champ magnétique créé par un fil infini parcouru par un courant I est donné par

. — pol =2

(théoréme d’Ampere) : B = 52
est donc donnée par :

—3/2

ep. Par analogie dimensionnelle, la quantité By = ||B0||

Kol

Ba —
"7 9R
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4. On pose X = z/R. Les termes en X et en X3 se compensent et il ne reste dans le
développement limité que :

8 288 24
Eii(z):NBo { - } 4

5/ L° 125 RE)

(Sur laxe (Oz), le champ magnétique est bien siir colinéaire a 2 car si M est sur cet axe,
le plan (M, e, ej) est un autre plan d’antisymétrie des courants de sorte que B, = 0).

En O, z =0 et on a donc :
8
Bp(z=0)=NBy —= x 2

5V5

Il s’ensuit que la variation relative du Bj(z) au voisinage de z = 0 s’écrit :

Bu(z) — Bp(0)| 144 2*
—_—t| = ———7 < 2/100
By, (0) 125 R* /
ce qui implique :
125\ an
S <72 x 100) = o om
Il s’agit donc d’une zone relativement étendue de part et d’autre de O.
16
On calcule By(z =0) = NBy —= = 1,2 mT

5V5

5. Il y a N tours de fil par bobine donc 2N tours de fil au total. La longueur totale de fil
est donc 2N x 2rR = 94 m et la résistance totale du fil est donc :

On en déduit que la puissance dissipée par effet Joule dans les deux bobines s’écrit :

P;=RitI>~6W

6. Manifestement by(z) = Bp(z) (valeur sur 'axe Oz) et ¢o(z) = 0 puisque la composante
radiale de Bj, s’annule sur ’axe.

= — = =
En utilisant div By, = 0 et rot B, = 0 on obtient :

1 I(r?ci(2)) N O(By, + rb1(2) + r%ba(2))
r or 0z
et

B
=0 donc 2c(z)+ M—Frdbl +r2d—b2

P e Pl

OBy, B OBy,
0z or

Ces équations étant valables pour tout 7 et z (& condition que r soit suffisamment petit),
on fait tendre r vers 0 pour obtenir :

—0 dot r%(z) —by(2) — 2rba(2) = 0 @)

1dB
bi(2) =0 et et cl(z):_iT;(z)

Finalement, sachant que b;(z) = 0, I’équation (2) conduit a :

1d%By,
4 dz2

d01

—(2) — 2be(2) =0 soit ba(z) = Ldey

~2dz

(2) = (2)
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. . ;. 4
7. Applications numériques. B, (r,z) = — Qg(z)— — (2). Or By(z) = NBy 5%}5 [ — 2 Vs ],
donc B,j(r,0) = 0. On retrouve bien que la composante radiale est nulle en O (en effet,

d’apres Q.2, B, (r, z) est impaire par rapport a z).
En z = 1 cm, calculons tout d’abord la valeur numérique du terme du premier ordre (1)

en r de la composante radiale. D’apres la question précédente :

_Ich(z)_uoNIf 8 288x4 2z
2 dz 7/ 2R 25,5 125 R?

B (r,z) =

On trouve By, = 5,5x 107 mT. La composante du second ordre (2) en r s’écrit :

2 dQBh( ) poNIT? 8 288x4x322 3r
_— —(z) = J— —_— = —
4 dz2 2R 4 55 125 RY 2z

B (r,z) = B (r, 2)

Finalement,

By (r,2) =14 x 107t mT | < 1,2 mT

On peut donc conclure que la composante radiale de ? est nulle ou bien négligeable

devant la composant longitudinale Bp,. Autour du point O, le champ magnétique est
donc quasiment dirigé selon €2 en tout point.

Partie II — Mesure des caractéristiques d’une boussole

8. Cest lorsque le moment magnétique 771 est colinéaire au champ magnétique g(O) et de
méme sens. 1 est donc dirigé selon +el (en supposant I > 0).

9. On a le schéma suivant :

16

5V5

Le théoréeme du moment cinétique (TMC) appliqué & la boussole donne alors, dans la
limite des petits mouvements ou sinf ~ 6 :

m:m(cosﬁe_;—sinea;) donc ?:—mNBO sinf e,

. 1 . 1 NB
JQ:—mNBg—GG donc 6+ 6m 09 =0

5v/5 5v/5J

Il s’agit d’un oscillateur harmonique de période propre :

5v5J

— o] 2V
Tose = 4T\ 96 N By

10
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10. On sait que [m] = A.m? et J = kg.m?. On en déduit que [k] = A.kg™!. On a d’autre
part :

4 2
_ At 5V5 an 3,6 x 10° Akg ™!

T¢J2$c 16NB()

Partie III. — Principe du moteur synchrone

11. Si on remarque que :
T 1 1
CcoS wti—)zcoswt— sin(wot) —
( ot =7 (wo )\/i:F (wo )\/§
on obtient :

2
Hﬁ(O,t)H? = % [(COS(wgt) + sin(wot))? + (cos(wot) — sin(wot))Q] - Bg

et, en notant (t) 'angle que fait le vecteur ?(O, t) avec & a l'instant ¢, on a :

o(t) = wot + %

On peut donc écrire plus simplement :

B(0.t) = By [sin(p) & +cos (¢) 7]

Ainsi le vecteur g(O,t) est un vecteur tournant dans le sens trigonométrique, avec la
vitesse angulaire wp. Sa norme reste constante au cours de la rotation.

§(O, t) peut étre généré a partir de 2 bobines d’axes respectifs . et ?}y, et alimentées
par des courants sinusoidaux déphasés de 7.

12. a) A linstant t on a :
m:mcos(wt—i—%—a) e_g;—i-msin(wt%—%—a) e_z>

On calcule produit vectoriel avec le champ magnétique tournant dont ’expression
est donnée a la question 6. et on utilise le formulaire donné en début d’énoncé pour
trouver ;

?(t):mTBO [Cos((w+wo)t—a)+cos((w—wo)t+g—oz)
—sin((w—f—wo)t—i—g—a) —sin((w—wo)t—a)] e

b) Si w # wp les valeurs moyennes de tous les cos et sin sont nulle. La seule possibilité
pour qu’elles ne soient pas nulles est w = wy. Les valeurs moyennes des termes en
cos( (w+wp)t+ ...) et sin( (w + wp)t + ...) restant nulles, il ne reste alors que :

w=uwy et <?> = mBysina e,

¢) On veut que <?>a§ > 0 et il s’ensuit que sina > 0, ce qui impose « €]0, 7]

13. a) Le schéma est donné ci-dessous :

11
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Si on applique le théoreme du moment cinétique a la boussole, sachant que w =
Cste, on obtient (en désignant par J le moment d’inertie de la boussole par rapport
a l'axe de rotation Ox) :

B 1
dez()z(?).e_g—% d’ou sina:§

ce qui donne les deux solutions a; = 7/6 et g = m — /6 = 57 /6.

b) Provisoirement on a donc w < wp puisque la boussole est ralentie, donc la boussole
va 'prendre du retard" par rapport au champ tournant, et « va donc légerement
augmenter.

e Si le point de fonctionnement était situé en oy, d’apres la figure, le fait qu'«
augmente va conduire a une augmentation du couple moteur I', de sorte que la
boussole va "rattraper son retard'.

e Si le point de fonctionnement était situé en ao, d’apres la figure, le fait qu’«
augmente va conduire a une diminution du couple moteur I', de sorte que la
boussole va "prendre encore davantage de retard" et va se désynchroniser avec
le champ magnétique. La boussole va rapidement s’arréter de tourner dans ce
cas.

Finalement, seul a4 est donc une position de fonctionnement moteur stable.

Partie II1 — Poles géographiques et magnétiques

14. C’est parce que le moment magnétique de la boussole s’aligne sur la composante horizontale
du champ magnétique local qui est dirigé vers le nord magnétique. Cet équilibre est stable
si M est dans le méme sens que

15. On utilise la formule donnée par I’énoncé pour obtenir :

_)
M:Moe_2>:MOCOSQe_,?—Mosinee_p> et ﬁ:RTe_r>

ce qui conduit a :

BBt S(ﬁe_z)(l\_fﬁ) - R2 (]\76_7?) ~ poMo 2cos @
T 4 R5. ~ 4n R

1o 3(R.€))(M.R) — R (M.€}) _ jioMy sinf

By = B.ej =
o co 47 Rgl 47 R;’«

et B, = ﬁ.e_go = 0. On retrouve donc la formule du cours :

M,
B(P) = ZSR?(’) (2cosf e +sinf ej)
T

12
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16. Les lignes de champ magnétique étant dirigées du Sud vers le Nord, on a (en se souvenant
de Pallure des ligne de champ d’un dipéle données dans le cours) : My < 0. Pour s’en

convaincre, on peut aussi regarder la direction et le sens de ﬁ a ’équateur, c’est a dire
pour 0 =7 /2 :
— . /LoMO —

0 = r/2) = — Holo o

Bo — _
E= ur R% 0 4 R% ©
Or ce champ doit étre dirigé vers le nord, ce qui impose My < 0. On en déduit que :
M, A7 R3.B
Bp = Hol 3?’ dot |My= — T T2E AN 7.g. 10224 .m?
4r Ry, Ho
e Au pole magnétique nord, 6 =0 et :
2p0|Mo| 5
By| = ZHO0 9B, —6,0%x107° T
[Bn| 47rR% E

o Au pole magnétique sud, § = 7 et l'intensité du champ magnétique est la méme (en
valeur absolue) :

=2 = =2Bp = 107° T
e E=16,0x10

_)
17. On peut faire un schéma global avec les lignes de champ. Attention, sur ce schéma, M

_>
est orienté vers le haut, ce qui définit 'axe 2z et ’angle 8, mais comme M = —Mo?z, les
lignes de champ magnétiques partent "vers le bas"!

: - allure d’une ligne
- == 5N €r de champ

On fait un schéma pour I’hémisphere nord, localement au voisinage du sol. On a donc

6 €]07/2[, donc cosf > 0 et sinf > 0. Cependant nous avons My < 0, ce qui conduit au
schéma ci-dessous :

&
Nord Sud
Sol
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On voit donc que I < 0 dans I’hémisphere nord. On a de plus :

B 2cosf _ 2cos(m/2—A)
By sinf  sin(n/2—\)

tan(l) = = —2tan A

I (en °)

pole sud
90

75
60
45
30

15

—15
-30
—45
—60
—75

pole nord

-90 A (en °)
—-90 -7 —-60 —45 —-30 —-15 O 15 30 45 60 75 90

A proximité des péles, la composante horizontale devient trés faible devant la composante
verticale et la stabilité de la direction n’est plus assurée par fluctuation du champ horizontal
tres sensible eu égard a la faiblesse de sa valeur. Si le soleil est visible, on peut déterminer
avec une boussole si on est dans I'hémisphére nord (en particulier aux latitudes grandes
et moyennes : le soleil est du coté sud alors que c’est l'inverse dans l'autre hémisphere).
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