
MP1&2 Janson de Sailly DS n°5bis - Électromagnétisme

DS n°5bis (Centrale - Mines)
Samedi 24 janvier 2026 - Durée 4h

Le candidat attachera la plus grande importance à la clarté et à la précision de la rédaction.
Tout commentaire pertinent sera valorisé.

Tous les résultats devront être mis en évidence. Une application numérique qui ne respecte
pas le nombre de chiffres significatifs des données de l’énoncé ou qui est sans unité ne donnera
pas lieu à une attribution de points.

1 Mesure des variations du champ de gravitation terrestre
Données numériques :

Constante de la gravitation universelle : G = 6,67 × 10−11 m3.s−2.kg−1

Masse de la Terre : mT = 5,97 × 1024 kg
Rayon terrestre moyen (au niveau de la mer) : RT = 6 371 km

Lorsqu’une question est marquée (R.P.) (résolution de problème), elle n’est pas guidée et
demande de l’initiative de la part du candidat. Les pistes de recherche doivent être consignées
; si elles sont pertinentes, elles seront valorisées. Le barème tient compte du temps nécessaire
pour explorer ces pistes et élaborer un raisonnement.

On s’intéresse au champ gravitationnel g⃗(M) créé en un point M par une distribution de
masse volumique ρ qui satisfait les équations locales suivantes:

div g⃗ = −4πG ρ et −→rot g⃗ = −→0 (1)

1. Dresser une analogie entre les équations (1) et celles de l’électrostatique.

2. Énoncer le théorème de Gauss gravitationnel.

3. On considère une tranche de matière d’épaisseur h comprise entre les deux plans z = −h/2
et z = +h/2. Cette tranche est infinie dans les directions Ox et Oy et on suppose que la
masse volumique ρ de la matière qui y est contenue est uniforme

Figure 1: Tranche de matière d’épaisseur h.

a) Déterminer soigneusement par une étude de symétries la direction de −→g (M) en un
point M quelconque ainsi que les coordonnées dont il dépend.
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b) Que dire de la valeur du champ de gravitation en un point M du plan (xOy) ? En
deux points M et M ′ symétriques par rapport au plan (xOy) ?

c) Par une méthode de votre choix, déterminer l’expression du champ de gravitation
créé par la tranche en tout point M de l’espace. En donner une représentation en
fonction de z.

4. Dans cette question la Terre est assimilée à une boule de centre O et de rayon RT , dont
la répartition de masses est à symétrie sphérique. Sa masse totale est mT .

Le champ de gravitation g⃗T (M) créé par cette boule en un point M tel que OM = r >

RT est de la forme g⃗T (M) = −gT (r) −→er où −→er = −−→
OM/r.

•O

•
Mr

−→er

R
T

Figure 2: Modèle sphérique de la Terre.

a) Quel est le signe de gT (r)?
b) Déterminer l’expression de gT (r) en fonction des paramètres G et mT .
c) Le champ de gravitation au niveau de la mer (r = RT ) est g0 > 0. Déterminer

une expression approchée de gT à une altitude h au dessus du niveau de la mer
en fonction de g0 et du rapport h/RT . On supposera h petit devant RT pour se
contenter d’une expression à l’ordre 1 en h/RT .

Application numérique : calculer g0.

niveau de la mer

−→ez

h •O R
T

Figure 3: Modélisation du plateau chilien.

On se propose de calculer la variation du champ de gravitation terrestre telle qu’elle a
été mesurée par Bouguer en 1738 sur un haut plateau chilien situé à l’altitude h = 1000
m par rapport au niveau de la mer (figure 3). On fait les hypothèses suivantes :

• le plateau est de masse volumique ρP = 2670 kg.m−3 uniforme;
• on le suppose suffisamment étendu dans les directions horizontales pour pouvoir

l’assimiler à une tranche infinie d’épaisseur h pour les calculs qui nous intéressent.
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• On note −→ez le vecteur unitaire ascendant dans la direction de la verticale locale au
niveau du plateau.

5. Soit g (g > 0) le champ de gravitation terrestre à la surface du plateau chilien. Établir
l’expression de ∆g = g − g0 en fonction de G, ρP , g0, h et RT .

Application numérique : calculer ∆g.

6. (R.P.) Bouguer disposait d’un pendule simple dont la longueur L avait été ajustée pour
que celui-ci ait une période T0 = 1 s au niveau de la mer et il savait mesurer une période
d’oscillation avec une précision de 10−5.

Était-il capable avec ce dispositif de mesurer l’écart ∆g du champ de gravitation terrestre
entre le niveau de la mer et le plateau ?
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2 Piéger une particule
Données générales :

Charge élémentaire : e = 1,6 × 10−19 C
Masse d’un proton : mp = 1,7 × 10−27 kg

Laplacien scalaire : ∆f = div(−−→grad f) = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2

L’objectif est de piéger une particule chargée en vue de la garder stockée le plus longtemps
possible. L’idée la plus simple consiste à piéger cette particule dans un puits de potentiel.

Le dispositif de piégeage est représenté sur la figure 4; il compte trois électrodes métalliques
présentant une symétrie de révolution autour d’un axe (Oz). La première, notée EB, est en
forme d’anneau de rayon interne r0 et d’équation x2+y2−2 z2 = r2

0; elle est portée à un potentiel
V0 positif. Les deux autres, notées EA1 et EA2, sont en forme de coupelles et correspondent
aux deux nappes de l’hyperboloïde d’équation x2 + y2 − 2 z2 = − 2 z2

0 ; elles sont reliées à la
masse.

La distance minimale entre les deux coupelles est telle que 2 z0 =
√

2 r0. On note V (x, y, z)
le potentiel régnant dans le piège à l’intérieur duquel on a fait le vide. Ce potentiel est donc
tel que V (0, 0, z0) = 0 d’une part et d’autre part si x2 + y2 = r2

0 alors V (x, y, 0) = V0.

x ou y

z

O

•

•

• •

V0 2r0

z0

EA1

EA2

EB

Figure 4: Dispositif de piégeage à trois électrodes

On admet qu’une particule ponctuelle de charge q placée dans le piège est soumise à une
force électrique de la forme F⃗ = a(x −→ux + y −→uy) + b z −→uz où a et b sont deux paramètres réels.

1. En écrivant l’équation aux dérivées partielles vérifiée par le potentiel V (x, y, z) obtenir
une relation entre a et b. Montrer que le potentiel s’écrit sous la forme :

V (x, y, z) = α + β (x2 + y2 − 2 z2)

puis, exprimer α en fonction de V0 et β en fonction de r0 et V0.

2. Tracer les équipotentielles dans les plans xOz et xOy. En déduire les lignes de champ
orientées dans ces mêmes plans.
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3. En écrivant le principe fondamental de la dynamique montrer que le point O(0, 0, 0) est
un équilibre. Montrer que cet équilibre est globalement instable quel que soit le signe de
la charge placée dans ce potentiel.

Afin d’éliminer l’instabilité démontrée à la question 3., une solution est d’ajouter un
champ magnétique uniforme −→

B0 = B0
−→uz avec B0 = 1,0 T dans le dispositif électrostatique.

Le piège devient ainsi une trappe de Penning; le mérite de sa mise en œuvre concrète est
du à H. G. Dehmelt qui reçut le prix Nobel de physique en 1989 pour cette réalisation,
l’idée originale de F.M. Penning datant de 1936.

4. La particule piégée dans la trappe de Penning est un antiproton p de masse mp et de
charge q = − e. Établir les équations différentielles vérifiées par les fonctions z(t) et
ξ(t) = x(t) + iy(t), où x, y et z sont les coordonnées cartésiennes de l’antiproton.

On introduira les constantes ωc = eB0
mp

et ω0 =
√

eV0
mpr2

0
. Montrer qu’il existe un champ

Bmin, tel que si B0 > Bmin conduit au confinement de l’antiproton. Calculer la valeur de
Bmin pour un piège tel que V0= 5,0 V et r0 = 5,7 mm.

5. Calculer la valeur numérique de ω0 et ωc pour la trappe de Penning considérée. En
déduire que le mouvement confiné de l’antiproton dans cette trappe est la composition
d’un mouvement rapide et de deux mouvements plus lents. On donnera une estimation
simple des pulsations de ces trois mouvements en fonction de ω0 et ωc.
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3 À propos de champs magnétiques
Donnée générale pour tout le problème

Perméabilité du vide µ0 = 4π × 10−7 H.m−1

Dans le système des coordonnées cylindriques (r, θ, z) de vecteurs de base (−→er , −→eθ , −→ez ), pour
tout champ vectoriel −→

A = Ar
−→er + Aθ

−→eθ + Az
−→ez , on donne :

div −→
A = 1

r

∂ (rAr)
∂r

+ 1
r

∂Aθ

∂θ
+ ∂Az

∂z

et
−→rot −→

A =
Å1

r

∂Az

∂θ
− ∂Aθ

∂z

ã
−→er +

Å
∂Ar

∂z
− ∂Az

∂r

ã
−→eθ +

Å
∂(rAθ)

∂z
− ∂Az

∂θ

ã
−→ez

Partie I − Réalisation d’un champ magnétique uniforme

On considère un solénoïde cylindrique de longueur ℓ comportant N spires jointives identiques,
circulaires de rayon R. Ce solénoïde est parcouru par un courant d’intensité I constante.

1. On se place dans le cadre de l’approximation du solénoïde infini. Établir l’expression du
champ magnétique −→

B créé par le solénoïde à l’intérieur de celui-ci. On pourra admettre
que le champ extérieur est nul.

Une autre méthode classique de production d’un champ magnétique uniforme est l’utilisation
des bobines de HELMHOLTZ. Les questions suivantes vont permettre d’expliciter leurs
caractéristiques.

On considère le montage de la Figure 1 constitué de deux bobines plates d’épaisseur
négligeable, composées chacune de N spires circulaires de rayon R, de même axe de
symétrie Oz. Ces deux bobines ont pour centres de symétrie respectifs O1 et O2 et elles
sont parcourues par des courants identiques d’intensité I constante. Les extrémités de ces
bobines sont séparées d’une distance 2d. La configuration d’HELMHOLTZ est obtenue
lorsque d = R/2.

On note −→
Bh le champ magnétique créé par la configuration d’Helmholtz et (Bhr, Bhθ, Bhz)

les composantes de −→
Bh dans la base (−→er , −→eθ , −→ez ) des coordonnées cylindriques (voir Figure

2).
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2. Justifiez que Bhθ = 0, Bhr = Bhr(r, z), Bhz = Bhz(r, z) et que la fonction Bhz(r, z) est
paire par rapport à la coordonnée z.

On montre qu’en un point M situé sur l’axe Oz, à l’abscisse z, le champ magnétique−→
Bh(z) créé par les bobines d’Helmholtz s’écrit :

−→
Bh(z) = N

−→
B0

{ñ
1 +
Å

z

R
− 1

2

ã2ô−3/2

+
ñ
1 +
Å

z

R
+ 1

2

ã2ô−3/2}

3. La quantité B0 = ∥
−→
B0∥ s’exprime en fonction de µ0, R et I. Par comparaison avec

d’autres champs magnétiques, choisir en justifiant précisément ce choix, l’expression de
B0 parmi les suivantes :

B0 = µ0R

2I
; B0 = µ0IR

2 ; B0 = µ0I

2R
; B0 = IR

2µ0

4. Les bobines ont un rayon R = 15 cm. On donne le développement limité suivant :ñ
1 +
Å

X ± 1
2

ã2 ô−3/2

= 8
5
√

5

ï
1 ∓ 6

5X ± 32
25 X3 − 144

125 X4 + o(X4)
ò

En déduire l’expression approchée −→
Bh(z) au voisinage de z = 0.

Dans quelle zone située sur l’axe Oz, peut-on considérer que la variation relative de la
norme du champ magnétique est inférieure à 2%? Préciser la valeur numérique de cette
norme sachant que N = 50 spires et I = 4 A.

5. Le fil conducteur utilisé est du cuivre de conductivité γ = 6.107 S.m−1 avec une section
carrée de côté a = 2 mm. Calculer la longueur totale de fil utilisé dans les bobines de
Helmholtz, la résistance électrique de ce fil ainsi que la puissance dissipée par effet JOULE
avec les valeurs numériques de la question 4. On rappelle que la résistance d’un fil de

conductivité γ, de longueur ℓ et de section S est donnée par R =
ℓ

γS
.

6. On s’intéresse maintenant à l’expression de −→
Bh au voisinage de l’axe Oz (mais pas sur

l’axe). Un développement limité des deux composantes Bhz et Bhr s’écrit :

Bhz(r, z) = b0(z) + r b1(z) + r2b2(z) + o(r2) et Bhr(r, z) = c0(z) + r c1(z) + o(r)

On se place dans la région au voisinage de O, de sorte que l’expression approchée de
Bh(z) (sur l’axe Oz) déterminée à la question 4. soit valable.

Que valent les fonctions b0(z) et c0(z) ?

En utilisant les équations de Maxwell, montrer que b1(z) = 0, c1(z) = − 1
2

db0
dz

(z) et

b2(z) = −
1
4

d2b0
dz2 (z).

7. Applications numériques. On reprend les données numériques de la question 4. en y
ajoutant r = 1 cm. Calculer Bhr(r, 0) et Bhr(r, z = 1 cm). Conclure.
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Partie II − Mesure des caractéristiques d’une boussole

Une boussole est formée d’un aimant permanent, solide en forme d’aiguille équivalente à
un petit dipôle magnétique −→m de norme constante m, la direction du vecteur −→m étant indiquée
sur la Figure 3. Sur cette figure, le vecteur −→m a été volontairement placé à côté de la boussole
pour plus de lisibilité. En réalité on le placera au centre de la boussole.

Figure 3

Cette aiguille aimantée peut librement tourner autour d’un axe (∆) formant une liaison
pivot à faible frottement.

Les interactions d’un dipôle magnétique rigide de moment dipolaire −→m soumis à un champ
magnétique extérieur −→

B sont décrites par l’énergie potentielle Ep = − −→m.
−→
B et par le couple

des actions électromagnétiques −→Γ = −→m ∧
−→
B .

8. La boussole est placée en O dans le dispositif des bobines de Helmoltz étudié dans la
partie I., l’axe (∆) étant confondu avec l’axe Ox de la figure 2. Quelle est la position
d’équilibre stable de la boussole ?

9. On note J le moment d’inertie de l’aiguille aimantée relativement à son axe de rotation
(∆). Légèrement écartée de sa position d’équilibre stable, l’aiguille aimantée oscille avec
une période τosc. Déterminer la relation entre τosc, J , m, N et B0.

10. La valeur mesurée de la période des petites oscillations de l’aiguille aimantée est
τosc = 0,30 s avec N = 50 spires, I = 4 A et R = 15 cm. Déterminer l’unité et calculer
la valeur numérique du rapport κ = m/J pour cette boussole.

Partie III. − Principe du moteur synchrone

On retire les bobines de Helmholtz et on place la boussole de la partie précédente dans un
nouveau champ magnétique −→

B (O, t) défini par :
−→
B (O, t) = B0

[
cos

(
ω0t − π

4

)
−→ez + cos

(
ω0t + π

4

)
−→ey

]
où B0 est une constante et où O correspond au centre de la boussole, cette dernière pouvant
librement tourner autour de l’axe (Ox).

11. Montrer que la norme de −→
B (O, t) est constante. Expliciter l’angle que fait le vecteur

−→
B (O, t) avec −→ey et conclure sur la caractéristique du champ magnétique ainsi produit en
O. Proposer un montage qui permettrait de générer un tel champ magnétique.

On donne à l’aiguille un mouvement de rotation autour de (∆) avec une vitesse angulaire
ω, de sorte que l’angle β(t) = (’−→ey , −→m) s’écrive β(t) = ωt + π

4 − α à l’instant t, avec
α ∈] − π, π].
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12. a) Calculer la valeur du couple −→Γ (t) exercé par le champ magnétique sur la boussole.

b) À quelle condition sur ω sa valeur moyenne au cours du temps ⟨
−→Γ ⟩ est-elle non nulle

? Lorsque cette condition est réalisée, donner l’expression de ⟨
−→Γ ⟩ en fonction de α,

B0 et m.

On suppose que la condition sur ω est réalisée dans la suite du problème. Comme
le champ magnétique tourne à une fréquence élevée, on admettra que seule la valeur
moyenne ⟨

−→Γ ⟩ du couple intervient pour étudier la rotation de la boussole.
c) En déduire pour quelles valeurs de α ce dispositif fonctionne en moteur, c’est à dire

lorsque l’action du champ magnétique est d’entraîner une rotation de l’aiguille dans
le même sens.

13. En pratique, la constance de la vitesse angulaire ω de l’aiguille est assurée par les
frottements sur son axe de rotation (Ox). Ces frottements solides créent un couple

résistant −→Γr constant, dont on supposera la norme égale à Γr =
mB0

2 , qui contrebalance
le couple des actions électromagnétiques.

a) Représenter ⟨
−→Γ ⟩ · −→ex en fonction de α, pour α variant dans la zone où le dispositif

fonctionne en moteur.

Faire figurer les deux points de fonctionnement possibles sur ce schéma, qui assurent
que la vitesse angulaire ω de la boussole reste constante en régime permanent.
Préciser les valeurs α1 et α2 correspondantes.

b) Un expérimentateur curieux freine la rotation de l’aiguille à l’aide d’un stylo pendant
une fraction de seconde, puis laisse le système évoluer à nouveau sous l’effet du couple
électromagnétique moyen et des frottements. Montrer que seule une des deux valeurs
de α précédentes permet à la boussole de reprendre sa rotation à la vitesse angulaire
ω0 à la suite de cette perturbation. On dit que le fonctionnement moteur est stable
dans ce cas.

Partie IV − Pôles géographiques et magnétiques

Données numériques
Champ magnétique terrestre à l’équateur BE = 3,0×10−5 T
Rayon terrestre RT = 6,4×103 km

Les pôles géographiques sont assez proches des pôles magnétiques. Dans tout ce qui suit,
on pourra confondre les deux axes reliant les pôles opposés de chaque type, c’est à dire que la
déclinaison magnétique sera supposée négligeable. La recherche des pôles magnétiques s’est
d’abord appuyée sur la mesure du champ magnétique terrestre (ou champ géomagnétique), et
en particulier de sa direction. L’intensité croissante du champ géomagnétique à l’approche des
pôles contribue enfin à expliquer un phénomène optique spectaculaire : les aurores polaires.

Coordonnées sphériques et géographiques

On notera (Oxyz) les axes cartésiens associés à la base orthonormée et directe (−→ex, −→ey , −→ez ).
Les coordonnées sphériques d’un point P sont notées (r, θ, φ) avec la base locale associée
(−→er , −→eθ , −→eφ), cf. fig. 4 à gauche. On note aussi φ (longitude) et λ la latitude d’un point P
de la surface terrestre ; le point A est situé sur l’équateur dans le méridien origine (φ = 0);
celui-ci passe par l’observatoire de Greenwich G, cf. fig. 4 à droite.
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Figure 4 Coordonnée sphériques et géographiques

Donnée relative à un dipôle magnétique

Le champ magnétique créé par un dipôle de moment dipolaire −→
M placé à l’origine O des

coordonnées est donné au point P par :

−→
B (P ) = µ0

4π

3−→
R
Ä−→
M.

−→
R
ä

− R2 −→
M

R5 où −→
R = −−→

OP et R =
∥∥∥−→

R
∥∥∥

14. Pourquoi une boussole à l’équilibre indique-t-elle le nord ? Cet équilibre est-il stable ?

On étudie un modèle de champ géomagnétique créé par un dipôle magnétique −→
M =

M0
−→ez disposé au centre O de la Terre (assimilée à une sphère de rayon RT ), l’axe (Oz)

étant l’axe polaire géographique dirigé du pôle sud de cet axe vers son pôle nord (cf. fig.
4). On rappelle d’une part qu’un point de la surface est caractérisé par ses coordonnées
géographiques φ (longitude) et λ = π/2 − θ (latitude) et d’autre part qu’à l’équateur le
champ magnétique terrestre est horizontal, dirigé vers le pôle nord géographique et y a
pour intensité BE .

15. Exprimer, en un point de la surface de la Terre et en coordonnées sphériques, le champ
géomagnétique en fonction de µ0, M0 et RT .

16. Préciser le signe de M0 puis estimer sa valeur numérique. Quelles sont la direction et
l’intensité du champ géomagnétique aux pôles magnétiques nord et sud ?

En un point P de la surface terrestre, on appelle nord magnétique local la direction −→eN

du champ géomagnétique, projeté dans le plan horizontal, et inclinaison magnétique
l’angle I formé par −→

B avec le nord magnétique local ; l’inclinaison magnétique est positive
si −→

B est dirigé vers le haut (vers le ciel) et négative s’il est dirigé vers le bas (vers le sol).

17. Dans l’hémisphère nord, quel est le signe de I ? Calculer tan(I) en fonction de la latitude
λ puis tracer l’allure de la courbe donnant I en fonction de λ pour toutes les valeurs
de λ du pôle sud au pôle nord. Pourquoi lisait-on parfois que les boussoles "s’affolent
à proximité des pôles" ? Peut-on déterminer, au moyen d’une boussole, si on se trouve
dans l’hémisphère nord ou dans l’hémisphère sud ?

FIN DU DEVOIR

10


