
MP1&2 Janson de Sailly DS n°6 (CCINP-e3a) - Ondes électromagnétiques

DS n°6 (CCINP-e3a)
(Samedi 1 février 2025 − Durée 4 h)

PROBLEME 2 - Quelques aspects de l’interaction entre le champ
électromagnétique et la matière.

Les notations et valeurs numériques des grandeurs utilisées dans ce problème sont résumées
dans le tableau ci-dessous.

Grandeur
Célérité des ondes électromag. dans le vide

Constante de Planck
Permittivité du vide
Perméabilité du vide
Charge élémentaire

Masse d’un électron

Notation
c

h

ε0

µ0

e

me

Valeur numérique
3,00× 108 m.s−1

6,63× 10−34 J.s
8,85× 10−12 F.m−1

4π × 10−7 H.m−1

1,60× 10−19 C
9,11× 10−31 kg

On note j le nombre complexe de partie imaginaire positive vérifiant j2 = −1. En régime
sinusoïdal forcé de pulsation ω, on convient d’associer à toute grandeur sinusoïdale a(t) =
A cos(ωt+ ϕa) deux grandeurs complexes :
— la première, notée A = Aejϕa , appelée amplitude complexe associée à a ;
— la seconde, notée a(t) = Aej(ωt+ϕa) = Aejωt, appelée grandeur sinusoïdale complexe

associée à a.
Dans le cas où la grandeur sinusoïdale est un champ a(M, t) = A cos[ωt + f(M) + ϕa],

dépendant de la date t et de la position −−→OM d’un point M via une fonction f nulle lorsque M
est confondu avec O, on note a(M, t) = Aej[ωt+f(M)] la grandeur sinusoïdale complexe associée
à a. À l’exception de j, les grandeurs complexes sont soulignées.

Les différentes parties de ce problème sont, dans une large mesure, indépendantes les unes
des autres. Néanmoins, des notions et notations utiles sont introduites au fil du sujet. Aussi
est-il conseillé de lire et de résoudre les parties du problème dans l’ordre de présentation.

1 Généralités sur les ondes électromagnétiques dans le vide
On se place dans le vide, milieu supposé n’avoir ni charge ni courant. On introduit un repère

cartésien orthonormé direct (O;−→ex,−→ey ,−→ez ). Un point M quelconque de l’espace est repéré par
ses coordonnées cartésiennes (x, y, z).

Q1. Citer les quatre équations de Maxwell vérifiées par les champs électrique −→E et magnétique−→
B dans ce milieu.

On rappelle que −→rot(−→rot−→• ) = −−→grad(div−→• ) − ~∆−→• , où −→• est un champ vectoriel et
−→
∆ est

l’opérateur laplacien vectoriel.

Q2. Obtenir l’équation de d’Alembert vérifiée par le champ électrique −→E . En déduire la relation
entre c, ε0 et µ0.
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On considère une onde électromagnétique solution de l’équation de d’Alembert de type
plane progressive monochromatique, de vecteur d’onde k et de pulsation temporelle ω. On
suppose qu’elle se propage dans la direction et le sens de −→ez .

Q3. Montrer que les champs électrique et magnétique de l’onde sont transverses à l’aide de la
notation complexe.

On suppose le champ électrique −→E de l’onde polarisé rectilignement selon −→ex. On note E0
son amplitude et ϕ sa phase à l’origine du temps et de l’espace.

Q4. Donner l’expression du champ électrique réel de l’onde en un point M à l’instant de date
t, noté −→E (M, t). On fera notamment apparaître E0, ω et k.

Q5. Établir la relation entre k et ω, appelée relation de dispersion.
Q6. Obtenir l’expression du champ magnétique réel de l’onde en un point M à l’instant de

date t, noté −→B (M, t).
Q7. Exprimer le vecteur de Poynting de l’onde en un point M à l’instant de date t, noté−→Π(M, t).
Q8. Exprimer la densité volumique d’énergie électromagnétique en un point M à l’instant de

date t, notée w(M, t), en fonction de E0, ω, k, ε0, t et de z.
Q9. On note T la période temporelle de l’onde plane progressive monochromatique. Montrer

que les valeurs moyennes temporelles de −→Π et de w vérifient 〈−→Π 〉T = c〈w〉T −→ez = cε0E
2
0

2
−→ez .

2 Pression de radiation

Milieu 2 : conducteur parfaitMilieu 1 : vide

z = 0

O

−→n12

−→
Bi

−→
ki

−→
Ei

−→ey −→ez

−→ex

Figure 1 – Onde électromagnétique en incidence normale sur un conducteur parfait.

On considère la situation de la figure 1 où le demi-espace z < 0 est le vide et le demi-espace
z > 0 est un conducteur parfait. Une onde incidente, identique à celle décrite dans les questions
Q4 à Q6, est réfléchie sur la surface du conducteur. On notera respectivement

−→
ki ,
−→
Ei(M, t) et

−→
Bi(M, t) le vecteur d’onde, le champ électrique et le champ magnétique de cette onde incidente
en un point M à l’instant de date t. On donne les relations de passage utiles pour le problème.
Entre deux milieux 1 et 2, on a :

−→n12 ∧
Ä−→
E2 −

−→
E1
ä

= −→0 et −→n12 ∧
Ä−→
B2 −

−→
B1
ä

= µ0
−→
js

où −→n12 est un vecteur unitaire orthogonal à l’interface, dirigé du milieu 1 vers le milieu 2 ,
où les champs −→E1 et −→B1 (respectivement −→E2 et −→B2) sont les champs totaux dans le milieu 1
(respectivement dans le milieu 2) au voisinage de l’interface et où −→js est le vecteur densité de
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courant de surface. On rappelle que les champs électrique et magnétique sont nuls dans un
conducteur parfait.

Q21. Déterminer l’expression du champ électrique réfléchi −→Er(M, t) en un point M à l’instant
de date t. On supposera que l’onde électrique réfléchie conserve la même polarisation que
l’onde incidente.

Q22. Déterminer l’expression du champ magnétique réfléchi −→Br(M, t) en un pointM à l’instant
de date t.

Q23. Que vaut le champ magnétique total en z = 0−(dans le vide au voisinage du conducteur) ?
En déduire l’expression du vecteur densité de courant de surface −→js (t) sur la surface du
conducteur, à la date t.

On admet que −→B (z = 0, t) = 1
2

î−→
B (z = 0−, t) +−→B (z = 0+, t)

ó
. En outre, en présence de

courants surfaciques et d’un champ magnétique, la densité surfacique de la force de Laplace
s’écrit

−→
fs = −→js ∧

−→
B .

Q24. Exprimer la force de Laplace totale −→FL s’exerçant sur l’aire S de la surface du conducteur
en fonction de ε0, E0, S, ω et de t.

Q25. Calculer la valeur moyenne de cette force sur une période temporelle T de l’onde. En dé-
duire que l’on peut lui associer une pression p, dite pression de radiation, dont l’expression
est p = ε0E

2
0 .

On appelle intensité I du champ électromagnétique la norme de la valeur moyenne du
vecteur de Poynting. On rappelle qu’en vertu de la relation démontrée dans la question Q9, on
a I = cε0E2

0
2 .

Q26. Calculer numériquement la pression de radiation pour la lumière venant du soleil (I1
GW.m−2) et pour celle d’un laser de haute intensité (I2 = 1 GW.m−2).

On veut désormais retrouver l’expression de la pression de radiation en décrivant la lumière
de manière corpusculaire, en la modélisant par un ensemble de photons se déplaçant dans un
faisceau cylindrique d’axe −→ez et de section S. On prendra une longueur d’onde λ de 600 nm et
on appelle Eγ l’énergie d’un seul photon.
Q27. On note n∗

γ la densité volumique de photons dans le faisceau (on se place dans le cadre
d’un modèle simple où cette densité est uniforme). Exprimer n∗

γ en fonction de Eγ , c et
de I puis calculer sa valeur numérique dans le cas du laser d’intensité I2.

Q28. Exprimer la quantité de mouvement −→pγ d’un photon en fonction de son énergie Eγ .
Q29. Déterminer l’expression vectorielle de la variation ∆−→pγ de la quantité de mouvement

d’un photon lors d’un rebond sur la surface métallique en fonction de Eγ et de c. On fait
l’hypothèse d’un rebond élastique, c’est-à-dire sans perte d’énergie cinétique.

Q30. Exprimer la variation de quantité de mouvement ∆−→pdt de l’ensemble des photons qui
rebondissent sur la surface métallique d’aire S pendant une durée infinitésimale dt en
fonction de I, S, dt et de c.

Q31. En déduire la force exercée par les photons sur l’aire S pendant une durée dt et retrouver
l’expression de la pression de radiation.

3 Notion de force pondéromotrice
Le principe de la force pondéromotrice est qu’un électron oscillant dans un champ électrique

harmonique uniforme subit en moyenne, sur une période, une force électrique résultante nulle.
En revanche, avec un champ non uniforme, la force moyenne résultante n’est pas nulle. C’est ce
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qu’on appelle la force pondéromotrice. Celle-ci a de nombreuses applications, comme le piégeage
ou l’accélération de particules chargées.

On considère un électron libre placé dans un champ électrique oscillant −→E (t) = −→Em cos(ωt)
et on s’intéresse à son mouvement. On ne prend en compte que la seule composante électrique
de la force de Lorentz. Pour simplifier, on considère un modèle à une dimension : −→E (x, t) =
Em(x) cos(ωt)−→ex, le mouvement de l’électron étant lui aussi selon l’axe (Ox). Tout d’abord, on
considère Em(x) = E0 constant.

Q32. Obtenir une valeur numérique limite de E0 permettant de négliger le poids de l’électron
par rapport à la force de Lorentz électrique. On fera intervenir l’accélération de pesanteur
g.

Q33. Vérifier que la force moyenne sur une période exercée par le champ électrique sur l’élec-
tron est nulle.

En régime sinusoïdal forcé établi, la vitesse de l’électron à la date t est de la forme v(t)−→ex =
Vm cos(ωt+ ϕv)−→ex.
Q34. Exprimer Vm en fonction de e, E0, me et de ω. Préciser la valeur du déphasage ϕv entre

la vitesse et le champ électrique.
On note x(t)−→ex = Xm cos(ωt+ ϕx)−→ex le vecteur déplacement de l’électron.

Q35. Exprimer Xm en fonction de e, E0, me et de ω. Préciser la valeur du déphasage ϕx entre
la position et le champ électrique.

On considère désormais un champ non uniforme en adoptant un modèle affine simple :
Em(x) = E0 + αx, où α et E0 sont deux constantes positives.

Q36. Quelle est l’unité de α ? Dans quel sens est orienté −−→grad
(
E2
m

)
? Donner son expression

en fonction de E0 et de α, en supposant que |αx| � E0.
On admet que, à l’échelle d’une période, le mouvement de l’électron autour de x = 0 reste

le même que celui décrit dans la question Q35.
Q37. Représenter le champ électrique et la force subie par l’électron lorsque x = Xm et lorsque

x = −Xm, en utilisant le fait que la position et le champ électrique sont en phase. Dans
quel sens est la résultante de ces deux forces ? Que peut-on en déduire quant au sens de
la force pondéromotrice ?

Q38. Calculer la force pondéromotrice subie par l’électron, définie comme la force moyenne
sur une période exercée par le champ électrique sur l’électron. On l’exprimera en fonction
de e, me, ω, E0 et de α.

On trouve généralement comme expression de la force pondéromotrice :

−→
fp = − q2

4meω2
−−→grad

(
E2
m

)
Q39. Vérifier, sur la situation simple de variation linéaire de l’amplitude du champ décrite

ci-dessus et avec le résultat de la question Q36, que l’on retrouve bien le résultat de la
question précédente.

On trouve sur une page Wikipedia à propos de l’accélération plasma, la phrase suivante : "
The Texas Petawatt laser facility at the University of Texas at Austin accelerated electrons to
2 GeV over about 2 cm". Sa longueur d’onde est λ = 632 nm.
Q40. Avec un modèle simple d’énergie cinétique initiale nulle et de force constante, évaluer la

valeur de la force pondéromotrice nécessaire pour obtenir cette accélération.
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Q41. On considère que la puissance du laser P = 1 PW = 1×1015 W est répartie sur un
faisceau de diamètre de 0,1 mm. Estimer le champ moyen E0 de ce laser et en déduire la
valeur de α requise pour produire la force calculée à la question précédente. On pourra
utiliser la relation démontrée dans la question Q9.
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PROBLEME 3 - Communication avec un satellite relais.

Afin de lutter contre les cyberattaques, mais surtout de profiter d’un refroidissement optimal
et "gratuit", une start-up californienne projette de stocker des données dans des satellites en
orbite à basse altitude autour de la Terre. Le projet prévoit la mise en orbite de 10 satellites
en tout.

Après avoir étudié l’énergie thermique libérée lors du stockage de données, on montre dans
une partie non traitée ici que la communication directe avec des satellites à basse altitude
(comme l’ISS) est impossible car le temps pendant lequel ceux-ci sont visibles dans le ciel est
beaucoup trop court pour réaliser les transferts de données.

On envisage donc l’utilisation de satellite relais à haute altitude (en orbite géostationnaire
par exemple).
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