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I. Ondes de Schumann. Centrale TSI 2011
I.B.1) RT = 6400 km et h = 100 km. Le rayon de la Terre est donc très supérieur à la distance

entre les deux parois conductrices, ce qui permet localement d’assimiler les surfaces à
deux plans parallèles.

I.B.2) Une onde électromagnétique correspond à la propagation simultanée de champs électrique
et magnétique.

Dans le cas d’une onde plane, les surfaces où l’onde prend la même valeur à chaque instant
t sont des plans. Dans le cas étudié, cela se traduit par le fait que les champs −→E et −→B ne
dépendent que de x et de t.

Une onde progressive se propage dans le sens des x croissants.
Une onde monochromatique ne contient qu’une seule fréquence. Elle est de la forme :

s(x, t) = Sm cos(kx− ωt+ ϕ)

I.B.3) L’intérieur de la cavité étant supposée vide de charges et de courants :

div
−→
B+
n = 0 div

−→
E+
n = 0

−→rot
−→
B+
n = µ0ε0

∂
−→
E+
n

∂t

−→rot
−→
E+
n = −∂

−→
B+
n

∂t

En utilisant ces équations et le formulaire, on peut écrire :

−→rot
(−→rot

−→
B+
n

)
= −∆

−→
B+
n = −→rot

(
µ0ε0

∂
−→
E+
n

∂t

)
= − 1

c2
∂2−→B+

n

∂t2

On en déduit par projection sur l’axe Oy avec

−→
B+
n = B+

n (x, t)−→ey : −∂
2B+

n

∂x2 = − 1
c2
∂2B+

n

∂t2

On obtient alors k2
n =

(
ωn
c

)2.

I.B.4) Il faut pour tout x que
−→
B+
n (x+) =

−→
B+
n (x−). Cela suppose donc que la circonférence de

la cavité soit égale à un nombre entier de longueurs d’onde : 2πRT = nλn

f1 = 7,46 Hz ; f2 = 14,9 Hz ; f3 = 22,4 Hz ; on trouve des valeurs proches de celles
mesurées expérimentalement.

I.B.5) L’onde étudiée est une onde plane se propageant dans la direction de l’axe Ox avec :
−→
B+
n = B+

n (x, t)−→ey

Le champ électrique est donc de la forme
−→
E+
n = E+

n (x, t)−→ez .

La projection de −→rot
−→
E+
n = −∂

−→
B+
n

∂t
sur l’axe Oy permet d’écrire :

−→
E+
n = −cB0n cos (ωnt− knx) −→ez
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I.B.6) a)
−→
B−n (x, t) = B0n cos (ωnt+ knx)−→ey

b) On a alors :

−→
Bn(x, t) =

−→
B+
n (x, t) +

−→
B−n (x, t) = 2B0n cos (ωnt) cos (knx) −→ey

en utilisant la relation de trigonométrie donnée.
De même :

−→
En(x, t) =

−→
E+
n (x, t) +

−→
E−n (x, t)

= −cB0n cos (ωnt− knx)−→ez + cB0n cos (ωnt+ knx) −→ez

et donc :
−→
En(x, t) = −2cB0n sin (ωnt) sin (knx) −→ez

en utilisant la relation de trigonométrie donnée.

L’onde résultante est une onde stationnaire. Elle est aussi polarisée rectilignement
selon −→ez

I.B.7) À l’interface entre deux milieux 1 et 2 : −→E2 −
−→
E1 = σ

ε0
−→n12 et −→B2 −

−→
B1 = µ0

−→
js ∧ −→n12.

L’ionosphère et la Terre sont considérées comme étant parfaitement conductrices. Les
champs −→E et −→B y sont donc nuls.

• On obtient alors en z = 0 : −→En = σn(z=0)
ε0

−→ez donc :

σ(z = 0, x, t) = −2cε0B0n sin (ωnt) sin (knx)

La densité surfacique de courant est donnée par −→Bn(z = 0+) = µ0
−→
jsn(z = 0) ∧ −→ez .

On en déduit :

−→
jsn(x, z = 0, t) = −Bn

µ0

−→ex = − 2B0n
µ0

cos (ωnt) cos (knx) −→ex

• De même en z = h : −→En(z = h−) = −σn(z=h)
ε0
−→ez donc :

σ(z = h, x, t) = 2cε0B0n sin (ωnt) sin (knx)

et comme −→Bn(z = h−) = −µ0
−→
jsn(z = h) ∧ −→ez , on obtient :

−→
jsn(x, z = h, t) = Bn

µ0

−→ex = 2B0n
µ0

cos (ωnt) cos (knx) −→ex

I.C Facteur de qualité de la cavité atmosphérique
I.C.1) L’énergie électromagnétique volumique a pour expression

uem = ε0
2 ‖
−→
En‖2 + ‖

−→
Bn‖2

2µ0
= 2B2

0n
µ0

(
cos2(ωnt) cos2(knx) + sin2(ωnt) sin2(knx)

)
Sa valeur moyenne temporelle vaut donc : 〈uem〉 = B2

0n
µ0

.
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L’énergie de la tranche considérée s’obtient alors par intégration :

〈En〉 =
∫∫∫

tranche
〈uem〉 dxdydz

On obtient :

〈En〉 = B2
0nbhλn
µ0

I.C.2) a) La densité volumique de courant Jn s’exprime en A.m−2 et la densité surfacique de
courant jsn en A.m−1 donc δtn est bien homogène à une longueur.

b) pJ = ‖ ~J‖2

γ

c) L’énergie dissipée dans la Terre est dissipée dans une couche d’épaisseur δtn, la den-
sité volumique de courant étant nulle pour une profondeur supérieure. La puissance
volumique dans cette tranche s’écrit :

pJ = ‖
~Jn(x, z, t)‖2

γt
= ‖

~jsn(x, z = 0, t)‖2

δ2
tnγt

= 4B2
0n

µ2
0δ

2
tnγt

cos2(ωnt) cos2(knx)

La puissance dissipée par effet Joule dans la tranche terrestre considérée s’obtient
alors par intégration de pJt dans l’espace :

PJtn =
∫∫∫

tranche

4B2
0n

µ2
0δ

2
tnγt

cos2(ωnt) cos2(knx) dτ

= 4B2
0n

µ2
0δ

2
tnγt

cos2(ωnt) δtnb
∫ λn

0
cos2(knx) dx

= 2B2
0n

µ2
0δtnγt

cos2(ωnt)λnb

L’énergie dissipée par effet Joule sur une période est l’intégrale sur le temps :

WJtn =
∫ Tn

0
PJtn dt = 2B2

0n
µ2

0δtnγt
bλn

Tn
2 = B2

0n
µ2

0δtnγt

λn 2πb
ωn

On obtient finalement, en utilisant l’expression de la conductivité donnée dans
l’énoncé : γ = 2

µ0ωδ2 :

WJtn = B2
0nδtnbπλn
µ0

d) De même : WJin = B2
0nδinbπλn
µ0

e) WJn = WJtn +WJin

I.C.3) On obtient alors Qn = 2h
δin + δtn

. A.N. : Q1 = 103 et Q2 = 1,5.103 .

Ces deux facteurs de qualité sont suffisamment élevés pour que l’on puisse considérer
les pertes énergétiques dans la Terre et l’ionosphère comme des perturbations et donc
utiliser les expressions des champs déterminées dans la partie I.B.
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II. Excitation d’ondes de surface - X PC 1994

A. Réponse du métal en présence du champ électromagnétique
1) Équations de Maxwell :

div ~E = ρ

ε0
div ~B = 0 −→rot ~E = −∂

~B

∂t
et −→rot ~B = µ0~j + 1

c2
∂ ~E

∂t

2) Le principe fondamental de la dynamique s’écrit :

m
d~v
dt = −e ~E − m

τ
~v

3) La densité volumique de courants vaut −→j = −ne~v donc :

m
∂~j

∂t
+ m

τ
~j = ne2 ~E

4) On prend la divergence de l’équation précédente en remarquant que div ~E = ρ
ε0

et que
div~j = −∂ρ

∂t et on obtient :
∂2ρ

∂t2
+ 1
τ

∂ρ

∂t
+ ω2

pρ = 0

avec ω2
p = ne2

mε0
.

En particulier, si la force d’amortissement est négligeable, τ −→ +∞ et on obtient une
équation d’oscillateur harmonique à la pulsation ωp :

∂2ρ

∂t2
+ ω2

pρ = 0

5) Pour Na, ωp = 9,18 × 1015 rad.s−1, ~ωp = 9,68 × 10−19 J = 6,05 eV, λp = 2πc
ωp

= 205
nm. Ce rayonnement est dans le proche ultraviolet.

Pour Al, ωp = 2,40 × 1016 rad.s−1, ~ωp = 2,53 × 10−18 J =15,8 eV, λp = 78,5 nm. Ce
rayonnement est dans l’ultraviolet lointain.

6) Partant de l’équation obtenue à la question 3), on obtient en passant dans le domaine
complexe : (

m (−iω) + m

τ

)
~j = ne2 ~E

On en déduit immédiatement ~j = γ(ω) ~E avec :

γ(ω) =
ε0ω

2
p

−iω + 1/τ
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7) Partons de l’équation de Maxwell-Ampère dans le domaine complexe et appliquons-lui
l’opérateur −→rot :

−→rot−→rot ~B = −−→grad div ~B −∆ ~B = −∆ ~B = µ0γ
−→rot ~E + 1

c2
∂
−→rot ~E
∂t

= −µ0γ
∂ ~B

∂t
− 1
c2
∂2 ~B

∂t2

compte tenu de l’équation de Maxwell-Faraday. Il vient :

∆ ~B − µ0γ
∂ ~B

∂t
− 1
c2
∂2 ~B

∂t2
= ~0

Or ~B est nécessairement de la forme −→B 0 exp[i(kx − ωt)]. Les règles de calcul dans le
domaine complexe conduisent donc à :Å

−k2 + µ0γ iω + ω2

c2

ã
~B = ~0

Cette équation impose :

k2 = ω2

c2 + µ0γ iω

relation de dispersion pour l’onde étudiée ici.

8) On utilise encore les règles de calcul dans le domaine complexe :

∆ ~E − µ0ε0εr(ω) ∂
2 ~E

∂t2
= ~0 ⇐⇒

Å
−k2 + εr(ω) ω

2

c2

ã
~E = ~0

Comme ~E 6= ~0, cela impose :

εr(ω) ω
2

c2 = k2 = ω2

c2 + µ0γ iω

d’après la question précédente. On en déduit que :

εr(ω) = 1 +
i µ0c

2γ

ω
= 1−

γ

ε0 iω

En remplaçant γ par son expression, on obtient bien :

εr(ω) = 1−
ω2
p

ω2 + iωτ

B. Étude des plasmons de surface

9) L’équation de d’Alembert vérifiée par −→E1 dans le vide s’écrit :

∆−→E1 −
1
c2
∂2−→E1
∂t2

= ~0

Or :

∆−→E1 =
d2−→E1(z)

dz2 exp[i(kx− ωt)]− k2−→E1(z) exp[i(kx− ωt)]

5



MP1&2 Janson de Sailly Corrigé du DS n°6bis -Électromagnétisme

et
∂2−→E1
∂t2

= −ω2−→E1(z) exp[i(kx− ωt)]

ce qui implique :
d2−→E1(z)

dz2 +
Å
ω2

c2 − k
2
ã −→

E1(z) = ~0

10) On veut une solution exponentielle (et non pas sinusoïdale) pour chacune des deux com-
posantes E1x et E1z ce qui impose (ω2/c2 − k2) < 0 et donc :

ω2 − c2k2 < 0

11) La solution générale de l’équation différentielle précédente s’écrit :
−→
E1(z) =

−→
E m1+ exp (α1z) +

−→
E m1− exp (−α1z)

avec α1 =
»
k2 − ω2

c2 . Cette solution ne diverge pas lorsque z → +∞ si que si
−→
E m1 = ~0.

12) On a :

div−→E1 = 0 ⇐⇒ ik E1x(z) + dE1z(z)
dz = 0

ce qui conduit à :
∀ z > 0, ik E1x(z) = α1 E1z(z)

13) Dans l’espace z < 0, −→E2 vérifie l’équation obtenue à la question 8, avec εr(ω) = 1−ω2
p/ω

2

réel. En suivant la même démarche on obtient :

d2−→E2(z)
dz2 +

Ç
ω2 − ω2

p

c2 − k2
å
−→
E2(z) = ~0

Pour avoir une solution exponentielle on veut :

ω2 − ω2
p

c2 − k2 < 0 ⇐⇒ ω2 − ω2
p − c2k2 < 0

On remarque que si la condition imposée à la question 10 est vérifiée alors la condition
précédente est réalisée automatiquement.

14) On a comme ci-dessus :
−→
E 2(z) =

−→
E m2 exp (α2z)

avec α2 =
√
k2 − ω2−ω2

p

c2 .

15) Là encore, la divergence nulle du champ électrique impose :

∀ z < 0, ik E2x(z) = −α2 E2z(z)

16) D’après les relations de passage, seule la composante tangentielle Ex est continue à l’in-
terface des deux milieux. En ce qui concerne −→B , toutes ses composantes sont continues
en l’absence de courants de surface ~jS .
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17) La continuité de la composante tangentielle de −→E en z = 0 entraîne :

E1x(0+) = E2x(0−)

On calcule ensuite −→B à l’aide de l’équation de Maxwell-Faraday :

∂
−→
B

∂t
= −−→rot−→E = −→∇ ∧−→E =

Å
ik Ez(z)−

dEx
dz (z)

ã
exp[i(kx− ωt)]−→ey

et donc :
−→
B = −

Å
k

ω
Ez(z) + i

ω

dEx
dz (z)

ã
exp[i(kx− ωt)]−→ey

La continuité de −→B en z = 0 entraîne alors :

k

ω
E1z(0+) + i

ω

dE1x
dz (0+) = k

ω
E2z(0−) + i

ω

dE2x
dz (0−)

soit :
k E1z(0+)− iα1 E1x(0+) = k E2z(0−) + iα2 E2x(0−)

ou encore, compte-tenu des questions 12 et 15 :Å
ik2

α1
− iα1

ã
E1x(0+) =

Å−ik2

α2
+ iα2

ã
E2x(0−)

L’équation E1x(0+) = E2x(0−) implique donc :

k2

α1
− α1 = −k

2

α2
+ α2 ⇐⇒ k2 = α1α2

En élevant cette équation au carré, on obtient :

k4 =
Å
k2 − ω2

c2

ãÇ
k2 −

ω2 − ω2
p

c2

å
soit, après développement et simplification :

k2 = ω2

c2
ω2 − ω2

p

2ω2 − ω2
p

Cette expression n’est acceptable si on a à la fois k2 > 0 et :

ω2 − c2k2 = ω4

2ω2 − ω2
p

< 0

ce qui conduit à :
ω <

ωp√
2

18) La relation de dispersion s’écrit encore

k(ω) = ω

c

√
ω2 − ω2

p

2ω2 − ω2
p

la courbe est tracée sur la figure 1. Elle est comparée à la relation analogue pour une
propagation dans le vide.
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Figure 1 - Relation de dispersion pour un plasmon de surface

La vitesse de phase sera supérieure à c si et seulement si k2

ω2 <
1
c2 soit ω2−ω2

p < 2ω2−ω2
p,

ce qui est toujours vrai : la courbe correspondant au plasmon a, sur la figure 1, une pente
toujours supérieure à celle correspondant à la propagation dans le vide.

19) On a ici λ0 = 2πc
ω

et λs = 2π
k

d’où :

λs
λ0

= ω

ck
=

√
2ω2 − ω2

p

ω2 − ω2
p

La distance demandée concerne une atténuation d’un facteur 10 d’une exponentielle,
c’est à dire exp(−α1d1) = 1/10 et exp(−α2d2) = 1/10, ce qui donne :

d1 = ln 10
α1

= ln 10
2π
√

1
λ2

s
− 1

λ2
0

et d2 = ln 10
α2

= ln 10
2π
√

1
λ2

s
− 1

λ2
0

+ 1
λ2

p

en posant λp = 2πc
ωp

.

20) Pour l’aluminium, avec ω = 2,40 × 1015 rad.s−1 donc λ0 = 785,4 nm, λs = 781,4 nm et
λp = 78,5 nm, on obtient :

d1 = 2,84µm et d2 = 29 nm

On remarque donc que ces ondes sont très localisées au voisinage de la surface.
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