
MP1&2 DS n°6bis - Ondes électromagnétiques

DS n°6bis (Centrale-Mines)
(Samedi 1 février 2025 − Durée 4 h)

I. Ondes de Schumann
Ce problème est consacré à l’étude de la propagation d’ondes électromagnétiques dans

l’atmosphère et à une modélisation de leur amortissement. Toutes les valeurs numériques ou
formules utiles dans cette partie, sont regroupées ci-après.

• Altitude de l’ionosphère : h = 1,00×102 km
• Rayon terrestre : RT = 6,40×103 km
• Conductivité électrique de la Terre : γt = 1 S.m−1

• Conductivité électrique de l’ionosphère : γi = 10−5 S.m−1

• Perméabilité magnétique du vide : µ0 = 4π×10−7 H.m−1

• Permittivité diélectrique du vide : ε0 = 8,85×10−12 F.m−1

• −→rot(−→rot−→A ) = −−→grad(div−→A )−∆−→A
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c) On définit le décrément logarithmique comme étant la quantité dm = ln u(t)
u(t+mT ) où T = 2π/ω et m est

un entier strictement positif. Exprimer dm en fonction de m et de Q.
d) On réalise un montage expérimental où le circuit RLC est excité par un générateur BF. Comment faut-il
choisir le signal délivré par le générateur pour observer les oscillations libres du circuit ? La tension aux bornes
du condensateur est enregistrée grâce à un logiciel d’acquisition. Le signal obtenu est représenté sur la figure 2.
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Figure 2 Oscillations libres du circuit RLC

Estimer le facteur de qualité Q du circuit.
I.A.4) On suppose Q � 1 : la dissipation d’énergie par effet Joule est traitée comme une perturbation par
rapport au cas du circuit non dissipatif (R = 0).
a) Dans le cas où R = 0, établir l’expression de la valeur moyenne temporelle 〈E〉 de l’énergie électromagné-
tique stockée dans le circuit.
b) Dans le cas où R 6= 0, montrer qu’au premier ordre en 1/Q, l’énergie WJ dissipée par effet Joule dans le
circuit RLC, pendant une période, vérifie la relation :

WJ = 2π
Q
〈E〉

I.B – Ondes de Schumann
La surface terrestre et l’ionosphère, couche supérieure conductrice de l’atmosphère, forment les deux parois,
supposées parfaitement conductrices dans un premier temps, d’une cavité sphérique. Afin de simplifier la géo-
métrie du problème, on « déplie » la cavité étudiée de façon à assimiler localement la surface terrestre à son
plan tangent (Oxy). On utilisera la base (O;~ex, ~ey, ~ez) des coordonnées cartésiennes, conformément au schéma
de la figure 3. L’intérieur de la cavité (0 6 z 6 h) est supposé vide de charges et de courants, ses propriétés
électromagnétiques sont identiques à celles du vide.
I.B.1) Justifier qualitativement l’approximation d’une cavité « dépliée ».
I.B.2) Expérimentalement, on observe que le bruit de fond électromagnétique atmosphérique, dû aux orages,
présente des résonances pour les valeurs suivantes (à 0,5 Hz près) de la fréquence, appelées fréquences propres
par la suite : 8, 14, 20, 26 Hz . . .
On envisage la propagation, dans l’atmosphère, d’une onde électromagnétique plane, progressive et monochro-
matique. La longueur d’onde λn, la pulsation ωn, la fréquence fn et le module du vecteur d’onde kn de cette
onde sont indexés par l’entier n strictement positif. Le champ magnétique de cette onde se met sous la forme :

~B(+)
n (x, t) = B0n cos(ωnt− knx)~ey .

Définir chacun des termes : « onde électromagnétique », « plane », « progressive » et « monochromatique ».
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Figure 3 Schéma de la cavité atmosphérique

I.B.3) On note ~E
(+)
n (x, t) le champ électrique de l’onde étudiée. Écrire les équations de Maxwell vérifiées

par ~B
(+)
n (x, t) et ~E

(+)
n (x, t) à l’intérieur de la cavité et établir l’équation aux dérivées partielles vérifiée par

~B
(+)
n (x, t). En déduire la relation liant ωn, kn et c = 1/√ε0µ0.

I.B.4) L’approximation d’une cavité « dépliée » exige aussi que la circonférence terrestre soit égale à un
multiple entier de la longeur d’onde λn : 2πRT = nλn. Interpréter cette relation. Calculer numériquement
les fréquences propres pour les trois premières valeurs de n et les comparer aux fréquences propres mesurées
expérimentalement.
I.B.5) Déterminer l’expression du champ électrique ~E(+)

n (x, t) de l’onde étudiée pour 0 6 z 6 h.
I.B.6) En réalité, l’onde peut se propager dans la cavité dans le sens des x croissants comme dans le sens
opposé.
a) Donner l’expression du champ magnétique ~B

(−)
n (x, t) en tout point identique à ~B

(+)
n (x, t) mais se propa-

geant dans le sens opposé.
b) On considère désormais que l’onde dans la cavité résulte de la superposition des deux ondes précédentes
qui se propagent dans des sens opposés. En déduire les expressions suivantes du champ magnétique résultant
~Bn(x, t) et du champ électrique résultant ~En(x, t) :

~Bn(x, t) = 2B0n cos(ωnt) cos(knx)~ey

~En(x, t) = −2cB0n sin(ωnt) sin(knx)~ez

Caractériser aussi précisément que possible l’onde résultante.
I.B.7) Rappeler les relations de passage pour le champ électromagnétique aux deux interfaces en z = 0
et en z = h. En déduire l’existence de courants et de charges électriques à la surface terrestre et à la surface
de l’ionosphère. Établir les expressions des densités surfaciques de courant correspondantes ~sn(x, z = 0, t) et
~sn(x, z = h, t).

I.C – Facteur de qualité de la cavité atmosphérique
Comme la Terre et l’ionosphère ne sont pas des conducteurs parfaits, l’énergie des ondes électromagnétiques pré-
sentes dans l’atmosphère est dissipée par effet Joule dans les parois de la cavité atmosphérique. L’amortissement
correspondant peut être caractérisé par un facteur de qualité, que l’on propose d’évaluer de la même manière
que pour le circuit RLC dans la partie I.A.
On définit une tranche de la cavité atmosphérique comme étant le volume compris entre x = 0 et x = λn, entre
z = 0 et z = h et entre y = 0 et y = b.
I.C.1) En utilisant les résultats de la questions I.B.6, établir l’expression de la valeur moyenne temporelle
〈En〉 de l’énergie électromagnétique de l’onde

(
~Bn(x, t), ~En(x, t)

)
, stockée dans la tranche considérée.

I.C.2) Les conductivités électriques respectives de la Terre et de l’ionosphère sont notées γt et γi. Pour calculer
l’énergie dissipée par effet Joule, on modélise les courants circulant dans la Terre par une densité volumique de
courant ~Jn(x, z, t) énergétiquement équivalente et circulant seulement sur une épaisseur δtn, appelée « épaisseur
de peau », à la surface de la Terre :

~Jn(x, z, t) = ~sn(x, z = 0, t)/δtn pour −δtn 6 z 6 0
~Jn(x, z, t) = ~0 pour z 6 −δtn

avec δtn =
√

2/(µ0γtωn) et où ~sn(x, z = 0, t) est la densité surfacique de courant déterminée à la question I.B.7.
a) Contrôler que δtn est bien homogène à une longueur.
b) Rappeler l’expression de la puissance volumique dissipée par effet Joule en fonction de ‖ ~J‖ et de γ dans
un conducteur ohmique de conductivité γ parcouru par des courants électriques de densité volumique ~J .

I.C - Facteur de qualité de la cavité atmosphérique

Comme la Terre et l’ionosphère ne sont pas des conducteurs parfaits, l’énergie des ondes
électromagnétiques présentes dans l’atmosphère est dissipée par effet Joule dans les parois de
la cavité atmosphérique. L’amortissement correspondant peut être caractérisé par un facteur
de qualité, que l’on propose d’évaluer.
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Figure 3 Schéma de la cavité atmosphérique
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c) En déduire l’expression de l’énergie dissipée par effet Joule dans la Terre, pendant une période 2π/ωn,
entre x = 0 et x = λn, y = 0 et y = b. Exprimer le résultat en fonction de B0n, µ0, b, δtn et λn.
d) Sans calculs supplémentaires, donner l’expression de l’énergie dissipée par effet Joule dans l’ionosphère,
pendant une période 2π/ωn, entre x = 0 et x = λn, y = 0 et y = b. On fera intervenir la profondeur de peau
dans l’ionosphère δin =

√
2/(µ0γiωn).

e) Exprimer l’énergie totale WJn dissipée par effet Joule, pendant une période, dans les parois de la tranche
considérée.
I.C.3) Définir le facteur de qualité Qn de la cavité atmosphérique pour l’onde étudiée par une relation
similaire à celle établie à la question I.A.4. Exprimer Qn en fonction de h, δtn et δin. Donner la valeur numé-
rique de Qn pour les deux premières valeurs de n. Que pensez-vous de la précision de la méthode perturbative
utilisée ?
I.C.4) Déduire de la valeur de Qn une estimation numérique de la durée caractéristique τn d’amortissement
de l’onde pour n = 1. La comparer à la durée moyenne entre deux impacts de foudre sur la Terre, qui est de
l’ordre de 10−2 s.

II Quelques aspects thermodynamiques de l’atmosphère
La densité de l’air atmosphérique décroît fortement avec l’altitude, ce qui fait que l’essentiel de la masse de
l’atmosphère est concentrée dans la troposphère. Dans les questions suivantes, nous étudierons uniquement
cette région qui s’étend jusqu’à une dizaine de kilomètres d’altitude. Le champ de pesanteur terrestre y est
supposé uniforme : ~g = −g~ez où le vecteur unitaire ~ez est orienté selon la verticale ascendante. L’altitude z = 0
correspond à la surface des mers et océans. L’étude est menée dans le référentiel terrestre, supposé galiléen.
Données :
− Rayon terrestre : RT = 6,40× 103 km
− Accélération de la pesanteur : g = 9,81 m · s−2

− Constante des gaz parfaits : R = 8,31 J ·K−1 ·mol−1

− Masse molaire du diazote : MN2 = 28,0 g ·mol−1

− Masse molaire du dioxygène : MO2 = 32,0 g ·mol−1

− Masse molaire de l’air : Ma = 28,8 g ·mol−1

− Rapport des capacités thermiques massiques de l’air : γ = cP

cV
= 1,40

− Enthalpie massique de vaporisation de l’eau (supposée indépendante de la température) :
`vap = 2,25× 106 J · kg−1

L’air et la vapeur d’eau sont assimilés à des gaz parfaits. On note cP la capacité thermique massique de l’air à
pression constante.

II.A – Équilibre isotherme de l’atmosphère
On s’intéresse à l’équilibre hydrostatique de l’air dans l’atmosphère terrestre. Les valeurs de référence pour la
température et la pression seront prises en z = 0 à P0 = 1,00 atm = 1,01× 105 Pa et T0 = 300 K.
II.A.1) On note µ la masse volumique de l’air.
a) En considérant les deux principaux constituants de l’air, justifier la valeur de Ma.
Montrer que l’équation d’état des gaz parfaits s’écrit P = µRaT , où P et T sont la pression et la température
absolue du gaz et Ra est une constante qui dépend du gaz. Calculer cette constante en unités SI.
b) Écrire l’équilibre d’un volume infinitésimal d’atmosphère situé entre les altitudes z et z + dz. En déduire
que le gradient vertical de pression vaut dP/dz = −µg.
II.A.2) Le modèle le plus simple d’atmosphère (atmosphère isotherme) consiste à supposer que la température
est constante et égale à T0. En déduire P (z). Définir une longueur caractéristique des variations de la pression
et la calculer à 300 K. Donner aussi l’expression de µ(z).

II.B – Stabilité de l’atmosphère isotherme
On propose maintenant d’étudier la stabilité de l’atmosphère isotherme vis-à-vis des mouvements verticaux de
l’air. On considère une parcelle d’air en équilibre mécanique et thermique à l’altitude z0. Cette parcelle d’air
constitue un système fermé. Sa masse, son volume, sa pression, sa température et sa masse volumique sont
notées respectivement m1, V1, P1, T1 et µ1. On envisage un mouvement vertical de cette parcelle d’air qui la fait
passer de l’altitude z0 à l’altitude z0 + ε(t), avec |ε(t)| � z0. On fait l’hypothèse que la pression de la parcelle
d’air reste égale à la pression environnante à toute altitude et que, vu la faible conductivité thermique de l’air,
l’évolution considérée est adiabatique et réversible. Tous les calculs seront limités au premier ordre en ε(t).
II.B.1) Rappeler, pour un gaz parfait, les capacités thermiques molaires à volume constant Cvm et à pression
constante Cpm, en fonction de leur rapport γ et de R. En déduire l’expression de la capacité thermique massique
de l’air cP à pression constante en fonction de γ et Ra. Faire l’application numérique.
II.B.2) Traduire l’hypothèse d’équilibre thermique et mécanique de la parcelle d’air à l’altitude z0, en
considérant ses paramètres intensifs.

I.C.3) On définit le facteur de qualité Qn de la cavité atmosphérique pour l’onde étudiée
par :

Qn = 2π 〈En〉
WJn

Exprimer Qn en fonction de h, δtn et δin. Donner la valeur numérique de Qn pour les deux
premières valeurs de n. Que pensez-vous de la précision de la méthode perturbative utilisée ?

II. Excitation d’ondes de surface

Données numériques
Masse de l’électron : m = 9,1× 10−31 kg
Charge élémentaire : e = 1,6× 10−19 C
Vitesse des ondes électromagnétiques dans le vide : c = 3,0× 108 m. s−1

Perméabilité du vide : µ0 = 4π × 10−7 H · m−1

Constante de Planck réduite : ~ = h/2π = 1,05× 10−34 J. s
On rappelle que : −→rot−→rot~a = −−→grad div~a−∆~a

Pour décrire les propriétés électriques d’un métal, on utilise le modèle d’un gaz d’électrons
libres (électrons de conduction) dans une matrice d’ions positifs et fixes. Le but de ce problème
est l’étude de la réponse du métal à un champ électromagnétique, puis celle des plasmons de
surface.

Seule l’interaction du champ électromagnétique avec les électrons de conduction sera consi-
dérée, le reste de la matière étant assimilé au vide caractérisé par ε0 et µ0 ; les électrons seront
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supposés non relativistes. On utilisera, pour les grandeurs évoluant sinusoïdalement avec le
temps, la notation complexe avec le facteur exp(−iωt).

A. Réponse du métal en présence du champ électromagnétique
1) Écrire les équations de Maxwell dans le métal, traité comme un milieu assimilé au vide du

point de vue des constantes ε0 et µ0, en présence de charges volumiques ρ et de courants
volumiques ~j.

Les électrons du métal sont soumis au champ électrique −→E (M, t). Les interactions entre
électrons sont négligées, ainsi que les forces d’origine magnétique.

2) Écrire l’équation du mouvement d’un électron ; on admettra que les pertes d’énergie par
collisions peuvent être modélisées par une force d’amortissement donnée par −m~v/τ où
~v est la vitesse de l’électron et τ une constante.

3) Soit n le nombre, supposé élevé, d’électrons par unité de volume. Exprimer la densité
de courant ~j dans le métal en fonction de n, e, ~v puis expliciter l’équation différentielle
reliant ~j à ~E.

4) À l’aide des équations de Maxwell et de la loi de conservation de la charge électrique,
trouver l’équation différentielle vérifiée par la densité volumique de charge ρ.

Montrer que, si on néglige les forces d’amortissement, il peut exister dans le gaz d’élec-
trons des oscillations sinusoïdales de la densité volumique de charge électrique ρ, de
pulsation ωp que l’on déterminera en fonction de n, e, m et ε0.

5) Calculer ωp pour le sodium et l’aluminium. On supposera que chaque atome de so-
dium donne un électron et que chaque atome d’aluminium en donne trois. On donne
les concentrations atomiques (nombres d’atomes par unité de volume), CNa = 2,65 ×
1028 m−3, CAl = 6,02× 1028 m−3.

Calculer les énergies ~ωp correspondantes et les exprimer en électron-volt. Calculer
les longueurs d’onde correspondantes λp. à quel domaine du spectre électromagnétique
appartiennent-elles ?

Le champ électrique est celui d’une onde plane progressive sinusoïdale. En notation complexe
on l’écrit −→E = −→E 0 exp[i(kx− ωt)], où −→E 0 est constant et où k est fonction de ω.

Il s’établit dans le métal un régime sinusoïdal forcé dans lequel la densité de courant oscille
à la même pulsation ω que le champ électrique. On posera :

~j(M, t) = −→J0(x) exp(−iωt)

où −→J0(x) est un vecteur dont les composantes sont complexes

6) En utilisant les résultats de la question 3 , exprimer ~j en fonction de −→E , ω, ωp, ε0 et τ .

En déduire la conductivité complexe γ(ω) du métal.

7) Déterminer l’équation aux dérivées partielles que vérifie le champ −→B dans le métal.

En déduire que l’onde électromagnétique plane ci-dessus n’existe que si k et ω sont liés
par une relation que l’on explicitera à l’aide de γ, ε0 et c.
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8) Montrer que le champ électrique dans le métal satisfait à une équation de d’Alembert à
condition de remplacer ε0 par ε0 εr(ω), c’est à dire :

∆−→E = ε0 εr(ω)µ0
∂2−→E
∂t2

La grandeur εr(ω) est appelée permittivité relative complexe. Établir que :

εr(ω) = 1− ω2
p

ω2 + i ωτ

B. Étude des plasmons de surface
Dans toute cette partie, on négligera l’amortissement : τ −→ +∞.

On cherche un mode de propagation du champ électromagnétique parallèlement à l’inter-
face plan séparant le vide (demi-espace z > 0) d’un métal (demi-espace z < 0) décrit par
la permittivité relative déterminée à la question 8 de la partie A qui est désormais réelle et
qu’on écrira εr(ω) . On impose à ce mode d’être transverse, c’est-à-dire de satisfaire partout
div −→E = 0 et d’être sinusoïdal.

Dans le vide, le champ électrique est supposé de la forme :
−→
E 1(x, z, t) = −→E 1(z) exp[ i(kx− ωt) ] avec −→E 1(z) = E1x(z)−→ex + E1z(z)−→ez

Dans cette expression k est un réel positif.

9) Pour ω et k fixés, à quelle équation aux dérivées partielles pour −→E 1(z) conduit l’équation
de d’Alembert du champ −→E 1 ?

10) Quel signe doit avoir ω2−c2k2 pour que cette équation admette une solution qui décroisse
exponentiellement en s’éloignant de l’interface (onde localisée) ?

11) Montrer alors que −→E 1(z) = −→E 1m exp(−α1z) et exprimer α1 en fonction de k, c et ω.

12) Déterminer la relation qui lie les composantes E1x(z) et E1z(z).

On reprend la même étude pour le champ électrique dans le métal :
−→
E 2(x, z, t) = −→E 2(z) exp[ i(kx− ωt) ] avec −→E 2(z) = E2x(z)−→ex + E2z(z)−→ez

13) En suivant la même démarche que ci-dessus, expliciter la condition entre k, ω, c et εr
pour avoir une onde localisée au voisinage de l’interface. Exprimer cette condition à l’aide
de ωp.

14) Montrer alors que −→E 2(z) = −→E 2m exp(α2z) et exprimer α2 en fonction de k, c, ω et ωp.

15) Déterminer la relation qui lie les composantes E2x(z) et E2z(z).

On admet l’absence de toute densité surfacique de courants à l’interface des deux milieux.
En revanche il existe une densité surfacique de charge sur l’interface, qu’on ne cherchera
pas à déterminer.
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16) Quelles sont les composantes du champ électromagnétiques qui sont continues de part et
d’autre de cette interface ?

17) En déduire que k2 = α1α2 et que la relation de dispersion s’écrit :

k2 = ω2

c2
ω2 − ω2

p

2ω2 − ω2
p

Quelle condition doit satisfaire ω pour que cette expression soit acceptable ?

18) Tracer la courbe de dispersion k(ω) de ce mode qu’on appelle plasmon de surface. Dans
quel intervalle de fréquence la vitesse de phase est-elle supérieure à c ?

19) Soient λ0 la longueur d’onde dans le vide d’une onde électromagnétique de pulsation ω
et λs la longueur d’onde du plasmon de surface. Exprimer le rapport λs/λ0 en fonction
de ω et ωp. Calculer les distances à l’interface, dans le vide et dans le métal, pour les-
quelles l’amplitude du champ électrique a décru d’un facteur 10 par rapport à sa valeur
à l’interface.

20) Calculer λs et ces distances dans le cas de l’aluminium pour ω = ωp/10.
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