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Ondes planes électromagnétiques
dans un milieu matériel.

Conducteurs ohmiques. Plasmas.
Absorption. Dispersion

Dans tout le chapitre on note (R) le référentiel d’étude et on le
munit d’un repère d’espace R = (Oxyz) dont la base cartésienne
associée (−→ex,−→ey ,−→ez ) est orthonormale directe.
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I. Électromagnétisme dans un conducteur oh-
mique

1) Introduction

On étudie un conducteur ohmique, c’est à dire un milieu matériel
dans lequel est vérifiée la loi d’Ohm locale en tout point M du milieu
et à chaque instant t :

~j(M, t) = γ
−→
E (M, t)

où la constante γ > 0 est la conductivité électrique du milieu.

En pratique le conducteur ohmique sera un métal. Rappelons que
dans les métaux, l’ordre de grandeur de γ est 107 S.m−1.

On suppose que les constantes électromagnétiques du conducteur
sont identiques à celles du vide : ε0, µ0.

2) Densité volumique de charges dans le conducteur

On va voir que si, pour une raison ou pour une autre, il existe une
densité volumique de charges initiale ρ(M, t = 0) 6= 0 à un instant
origine t = 0 en tout point M d’un conducteur ohmique, celle-ci va
obligatoirement disparaître au cours du temps avec une constante de
temps τ = ε0/γ.
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Conclusion et hypothèse d’étude
On supposera dans toute la suite du cours qu’on se place à des ins-

tants t tels que ρ(M, t) = 0 en tout point M du conducteur ohmique.
On aura donc div−→E (M, t) = 0.

3) Courant de déplacement

Supposons qu’il existe dans le conducteur ohmique un champ élec-
trique qui oscille de façon sinusoïdale avec le temps, avec une pulsa-
tions ω : −→

E = −→Em cos(ωt+ ϕ)

.

Conclusion
Lorsqu’un champ électromagnétique (−→E ,−→B ) au sein d’un conduc-

teur ohmique oscille sinusoïdalement dans le temps avec une pulsation
ω � γ

ε0
(c’est à dire τω � 1, où τ est la constante de temps de relaxa-

tion de ρ), alors on peut négliger le courant de déplacement devant
le courant de conduction.

4) Équation de diffusion pour le champ électromagné-
tique
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.

5) Exemple de solution. Effet de peau

On considère une situation dans laquelle un conducteur ohmique
occupe le demi-espace x > 0 tandis que le demi-espace x < 0 est
constitué de vide ou d’air (dont les propriétés électromagnétiques sont
celles du vide : mêmes constantes ε0 et µ0).

y

x

Conducteur ohmique
γ, ε0, µ0

Vide ou air

On impose en tout point de la surface du conducteur, c’est à dire en
x = 0− un champ électrique qui varie sinusoïdalement dans le temps
avec une pulsation ω, de la forme :

−→
E (0−, t) = Em cos(ωt+ ϕ)−→ey

Pour x > 0 on cherche une solution particulière de l’équation de
diffusion du champ électrique indépendante des coordonnées y et z

du point M et qui s’écrit sous la forme :

−→
E (M, t) = −→E (x, t) = Re

Ä−→
E (x, t)

ä
avec −→E (x, t) = f(x) eiωt−→ey

où f : R+ −→ C est une application à valeur complexe dont on
cherche l’expression et qui ne dépend que de x.

1. Établir l’équation différentielle vérifiée par f(x).
2. En donner la solution compte-tenu des conditions aux limites en
x = 0 et à l’infini. Exprimer cette solution en fonction d’une
distance caractéristique δ à exprimer en fonction de µ0, γ et ω.

3. En déduire l’expression de −→E (x, t) pour x > 0 et interpréter son
expression. Déterminer de même l’expression de −→B (x, t).

Quelques ordres de grandeur pour δ

Prenons l’exemple du métal cuivre Cu(s) : γ = 5,96×107 S.m−1.
Avec la fréquence ν = ω

2π on a :

δ =
 

2
µ0γ 2πν = 1

√
µ0γπ

1√
ν

= 6,52× 10−2
√
ν

ν (Hz) 106 (Onde radio) 109 (Onde radio) 1014 (Visible)
δ 65 µm 2 µm 6,5 nm

Remarque :
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6) Pseudo-OPPS électromagnétiques

Plusieurs milieux matériels (dont les conducteurs ohmiques) per-
mettent une propagation en leur sein d’ondes électromagnétiques tout
en les atténuant de façon exponentielle au fur et à mesure de leur pro-
pagation dans le milieu.
Le bon outil mathématique pour décrire des ondes de ce type est

la pseudo-OPPS électromagnétique : il s’agit d’une OPPS EM mais
avec un vecteur d’onde complexe ~k.
Définition. Pseudo-OPPS vectorielle
On appelle pseudo-OPPS vectorielle tout champ vectoriel de la

forme :

~a(M, t) = Re (~a(M, t) ) avec ~a(M, t) = −→Am e
i(ωt−~k.~r)

où −→Am est le vecteur amplitude complexe et où ~k est le vecteur d’onde
complexe.

Interprétation

7) Règles de calcul avec les pseudo-OPPS

Règles de calcul

Si ~a = −→Am ei(ωt−~k.~r) alors ∂~a
∂t

= iω~a ; div~a = −i~k.~a et

−→rot~a = −i~k ∧ ~a ; ∆~a = − (~k.~k)~a

Remarques :

8) Application : propagation d’une onde électromagné-
tique dans un métal réel. Milieu dispersif.

On étudie la propagation d’une pseudo-OPPS dans un conducteur
ohmique de conductivité γ et dont les constantes électromagnétiques
sont ε0 et µ0. On suppose que cette pseudo-OPPS se propage dans
la direction +−→ex et qu’elle est rectilignement polarisée selon −→ey . Son
champ électrique complexe s’écrit sous la forme :

−→
E (M, t) = Em

−→ey ei(ωt−
~k.~r) avec Em > 0 et ~k = k−→ex

1. En partant de l’équation de diffusion vérifiée par le champ élec-
trique, déterminer l’équation vérifiée par k.

2. En déduire l’epxression de k en fonction de ω, µ0 et γ.
3. Déterminer l’expression du champ magnétique complexe −→B . En

déduire −→B = Re
Ä−→
B
ä
. L’onde est-elle transverse magnétique ?

4. Déterminer la vitesse de phase vϕ de cette pseudo-OPPS.
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Définition
On dit qu’un milieu matériel est dispersif lorsque la vitesse de phase

des OPPS ou des pseudo-OPPS qui se propagent dans ce milieu dé-
pend de la pulsation ω de l’onde :

vϕ = vϕ(ω)

II. Électromagnétisme dans un plasma

1) Définition d’un plasma

Un plasma est un milieu matériel constitué de cations (ions char-
gés positivement) et d’électrons totalement dissociés de leur atome
d’origine. Cations et électrons sont libres de se déplacer les uns par
rapport aux autres : il s’agit d’un état de la matière proche d’un gaz.

On l’observe :
• à haute température dans une étoile (plasma chaud) ;
• à basse température (plasma froid) dans l’ionosphère (couche de

l’atmosphère située entre 75 km et 250 km au dessus du niveau
de la mer). Dans ce cas ce sont les rayonnements visibles et UV
du Soleil qui provoquent l’ionsiation des atomes et molécules.

On peut aussi obtenir un plasma froid dans les écrans à plasma :
ici c’est un champ électrique qui est appliqué et qui est suffisam-
ment important pour ioniser les molécules.

2) Propagation d’une OPPS EM dans un plasma

On considère un plasma dont les caractéristiques sont :
• Cations : charge élec. q, masse mC , densité particulaire nc

(nombre de cations par unité de volume) supposée uniforme.
• Électrons : charge élec. −e, masse me, densité particulaire ne

supposée uniforme aussi.

On suppose que le plasma est localement électriquement neutre :
la densité volumique de charges y est nulle en tout point et à chaque
instant :
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Ordre de grandeur : pour l’ionosphère : 1010 6 ne 6 1012 m−3

On étudie la possibilité de propagation dans le plasma d’une
pseudo-OPPS avec un vecteur d’onde éventuellement complexe ~k =
k ~u, où ~u est un vecteur à composantes réelles qui indique la direction
de propagation de l’onde :

−→
E (M, t) = Re

Ä−→
E (M, t)

ä
avec −→E (M, t) = −→Em e

i(ωt−~k.~r)

−→
B (M, t) = Re

Ä−→
B (M, t)

ä
avec −→B (M, t) = −→Bm e

i(ωt−~k.~r)

On se donne ω (donc la fréquence de l’onde) et on souhaite déter-
miner l’expression de k ainsi que les propriétés de −→E et −→B .

3) Relation constitutive du plasma

Le passage de l’onde électromagnétique dans le plasma va mettre
les cations et les électrons en mouvement (force de lorentz) ce qui
va créer un vecteur densité de courant électrique ~j. On cherche la
relation entre ~j et −→E , appelée relation constitutive du plasma.

Cette partie du cours est à prendre sur feuille libre.

4) Relation de dispersion

Partie à prendre sur feuille libre.

5) Expressions du champ électromagnétique dans le
plasma. Onde stationnaire évanescente

Plaçons-nous dans le cas particulier où le champ électrique de l’onde
s’écrit sous la forme :
−→
E (x, t) = Re

Ä−→
E (x, t)

ä
avec −→E (x, t) = Em

−→ey ei(ωt−kx) Em > 0

1. Déterminer −→E (x, t) dans le cas où ω > ωp et dans le cas où
ω < ωp. Qualifier l’onde dans chacun de ces cas.

2. Déterminer le champ magnétique complexe −→B (x, t), puis
−→
B (x, t) = Re

Ä−→
B (x, t)

ä
dans les deux cas précédents.

III. Paquet d’onde. Vitesse de phase et vi-
tesse de groupe

1) Intérêt des OPPS

Une OPPS n’a pas de réalité physique car elle existe en tout point
de l’espace : elle est d’extension infinie aussi bien le long de son axe
de propagation ∆ que dans chaque plan d’onde P⊥∆.

Leur intérêt est que dans beaucoup de situations physiques, une
onde s(M, t) peut être considérée comme une somme d’OPPS. Cepen-
dant, cette somme n’est pas finie : un théorème dû à Joseph Fourier
montre que toute onde solution de l’équation de d’Alembert :

∆s− 1
v2

∂2s

∂t2

peut s’écrire sous la forme :

s(~r, t) =
∫∫∫

R3
Am(~k) ei(ωt−~k.~r) d3k
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2) Paquet d’onde électromagnétique unidimensionnel

Dans le cas des ondes électromagnétiques, l’aspect vectoriel de
l’onde peut rapidement rendre les calculs compliqués. Afin de sim-
plifier la situation on étudie un cas où le champ électrique de l’onde
s’écrit sous la forme :

−→
E (M, t) = E(M, t)−→ey

De plus (toujours dans le but de simplifier les choses), on va se
placer dans le cas où E(M, t) est un paquet d’ondes qui se propagent
toutes dans la direction −→ex : les vecteurs d’onde s’écriront donc ~k =
k−→ex. Comme ~k.~r = kx on a :

E(M, t) = Re(E(M, t) ) avec E(M, t) =
∫ +∞

−∞
Am(k) ei(ωt−kx) dk

On dit que E(x, t) est un paquet d’onde unidimensionnel (1 seule
coordonnée d’espace).
Deux exemples courants :

Paquet d’onde gaussien
Am = A0 e

−(k−k0)2/2σ2

k

|Am(k)|

k0

Paquet d’onde rectangulaire
Am = A0 Cste si k ∈ [k1, k2]
Am = 0 sinon

k

|Am(k)|

k1 k2k0

.

Enfin, l’onde se propage dans un milieu caractérisé par une relation
de dispersion :

ω = ω(k) ou k = k(ω)

Exemples :
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On va supposer que pour exprimer ω(k) dans l’intégrale du paquet
d’onde, on peut se contenter d’un développement limité à l’ordre 1 au
voisinage de k0. On parle de paquet d’onde dans une approxima-
tion à l’ordre 1.
Cette partie du cours est à prendre sur feuille libre.

Conclusion :
Pour tout paquet d’onde unidimensionnel, c’est à dire quelle que

soit l’expression de Am(k) et pourvu qu’une approximation à l’ordre
1 soit pertinente, c’est à dire lorsque ∆k/k0 � 1 ou lorsque le milieu
n’est pas dispersif, on a les propriétés suivantes :

• Le paquet d’onde est le produit d’une enveloppe E (x, t) par une
OPPS de la forme cos(ω0t− k0x+ ϕ) avec ω0 = ω(k0).

• L’enveloppe E (x, t) (dont la forme exacte dépend de la fonction
Am(k)) est d’entension limitée selon Ox, de l’ordre de ∆x, et se
propage à la vitesse de groupe :

vg(k0) = dω
dk (k0)

• L’OPPS se propage à la vitesse de phase : vϕ(k0) = ω(k0)
k0

= ω0
k0

• En ordre de grandeur on a toujours : ∆x×∆k ≈ 2π

x

E(x, t)

Le point important pour ne pas contedire la théorie de la relativité
restreinte est que :

∀ k, vk(k) 6 c

3) Exemples de vitesses de groupe
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