Résolution du problème

Les escalators accessibles à tous

Valigny Robin n°49071

17 mai 2023

SOMMAIRE

- 1 Introduction
- 2 Une étude expérimentale
- 3 Résolution du problème
- 4 Conclusion

Sommaire

- 1 Introduction
- 2 Une étude expérimentale
- 3 Résolution du problème
- 4 Conclusion

Le Sujet

- ▷ Les ERP : Plus d'un million en France
- ▷ Un problème d'accessibilité-
- ▷ Escalator VS Ascenseur

→Article R123-22 du Code la construction et de l'habitation

Résolution du problème

→Des nouvelles lois depuis 2015

→96% des FRP sont accessibles aux personnes handicapées ou se sont engagés dans la démarche prévue par la loi de 2015.



Source: webzine.okeenea.com

Introduction

00000

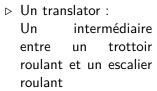
Problématique

Résolution du problème

Est-il possible d'aménager les escalators pour permettre aux personnes en fauteuil roulant de les emprunter?

Le but

> Un escalator : degré d'inclinaison : 30° vitesse du tapis : 6m/s



Sommaire

- 1 Introduction
- 2 Une étude expérimentale
- 3 Résolution du problème
- 4 Conclusion

Déterminer le centre de gravité par expérimentation

- Un fauteuil roulant de 13kg
- Deux planches de 3 mètres de long fixées sur un tube telle qu'elles puissent basculer lors du passage du fauteuil
- Une personne de 70kg sur le fauteuil (moi)

Montage

Déterminer le centre de gravité par expérimentation

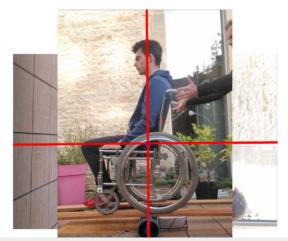
Deux situations

Résolution du problème

Déterminer le centre de gravité par expérimentation

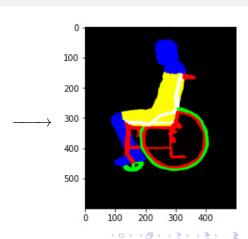
11/32

Déterminer le centre de gravité par expérimentation

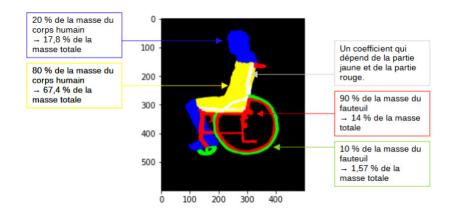


Résolution du problème

Déterminer le centre de gravité par méthode de Monté Carlo



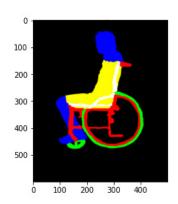
Déterminer le centre de gravité par méthode de Monté Carlo



Déterminer le centre de gravité par méthode de Monté Carlo

Méthode de Monté Carlo

- 10000 points sur l'image
- Déterminer les 5 isobarycentres
- ▷ En déduire le barycentre final



Résolution du problème

Nouveau résultat

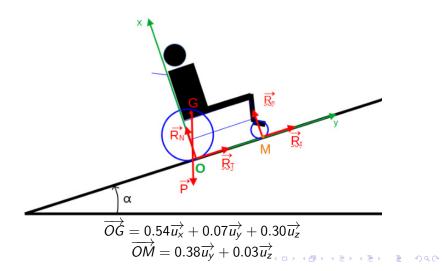
Comparaison des résultats

Sommaire

Introduction

- 1 Introduction
- 2 Une étude expérimentale
- 3 Résolution du problème
- 4 Conclusion

Schéma



Bilan des Forces

- Système :homme+fauteuil de masse m
- Référentiel du translator galiléen
- Bilan des forces :

Le Poids : $\overrightarrow{P} = -m \times g \times (\cos \alpha \overrightarrow{u_x} + \sin \alpha \overrightarrow{u_y})$ Réaction normale en O : $\overrightarrow{R_N} = R_N \overrightarrow{u_x}$ Réaction tangentielle en O : $\overrightarrow{R_T} = R_T \overrightarrow{u_y}$

Réaction normale en M : $\overrightarrow{R_n} = R_n \overrightarrow{u_x}$ Réaction tangentielle en M : $\overrightarrow{R_t} = R_t \overrightarrow{u_y}$

Moments des forces

Soit X le point où s'applique une force $\overrightarrow{F}: \overrightarrow{\mathcal{M}_O(\overrightarrow{F})} = \overrightarrow{OX} \wedge \overrightarrow{F}$

$$\overrightarrow{\mathcal{M}_{O}(\vec{P})} = \overrightarrow{OG} \wedge \overrightarrow{P} = \begin{pmatrix} z_{G} \times mg \times \sin \alpha \\ z_{G} \times mg \times \cos \alpha \\ mg \times (-x_{G} \times \sin \alpha + y_{G} \times \cos \alpha) \end{pmatrix}$$

$$\overrightarrow{\mathcal{M}_{O}(\vec{R_{N}})} = \overrightarrow{OO} \wedge \overrightarrow{R_{N}} = \vec{0}$$

$$\overrightarrow{\mathcal{M}_{O}(\vec{R_{I}})} = \overrightarrow{OO} \wedge \overrightarrow{R_{I}} = \vec{0}$$

$$\overrightarrow{\mathcal{M}_{O}(\vec{R_{I}})} = \overrightarrow{OM} \wedge \overrightarrow{R_{I}} = \vec{0}$$

$$\overrightarrow{\mathcal{M}_{O}(\vec{R_{I}})} = \overrightarrow{OM} \wedge \overrightarrow{R_{I}} = \begin{pmatrix} 0 \\ z_{M} \times R_{n} \\ -y_{M} \times R_{n} \end{pmatrix}$$

$$\overrightarrow{\mathcal{M}_{O}(\vec{R_{I}})} = \overrightarrow{OM} \wedge \overrightarrow{R_{I}} = \begin{pmatrix} -z_{M} \times R_{I} \\ 0 \\ 0 \end{pmatrix}$$

Théorème du moment cinétique

Théorème du moment cinétique

$$\frac{d\overrightarrow{\mathcal{L}_O(M)}}{dt} = \Sigma \overrightarrow{\mathcal{M}_O(\overrightarrow{F})}$$

Avec
$$\frac{d\overrightarrow{\mathcal{L}_O(M)}}{dt} = \frac{d\overrightarrow{OM} \wedge m\overrightarrow{v_M}}{dt} = \frac{d\overrightarrow{OM}}{dt} \wedge m\overrightarrow{v_M} + \overrightarrow{OM} \wedge m\frac{d\overrightarrow{v_M}}{dt}$$

$$Donc \frac{d\overrightarrow{\mathcal{L}_O(M)}}{dt} = \vec{0}$$

Expression de Rn

$$\text{D'après le TMC}: \overrightarrow{\vec{0}} = \overrightarrow{\mathcal{M}_O(\overrightarrow{P})} + \overrightarrow{\mathcal{M}_O(\overrightarrow{R_t})} + \overrightarrow{\mathcal{M}_O(\overrightarrow{R_t})}$$

Projection sur $\vec{u_z}$: $-y_M \times R_n = mg \times (-x_G \times \sin \alpha + y_G \times \cos \alpha)$

$$R_n = \frac{mg}{y_M} \times (-x_G \times \sin \alpha + y_G \times \cos \alpha)$$

Courbe de Rn

Ainsi :
$$R_n(\alpha) = \frac{830}{0.38} \times (-0.54 \times \sin \alpha + 0.07 \times \cos \alpha)$$

Déterminer l'inclinaison limite

On cherche $\alpha = \alpha_0$ tel que $R_n = 0$.

On résout donc :

$$\frac{830}{0.38} \times (-0.54 \times \sin \alpha_0 + 0.07 \times \cos \alpha_0) = 0$$

Ainsi on obtient :
$$\alpha_0 = \arctan(\frac{0.07}{0.54})$$

$$\alpha_0 = 7.39^\circ$$

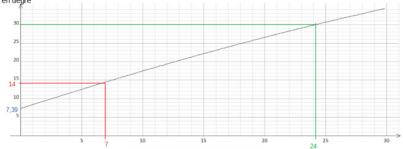
Une amélioration possible

$$\frac{mg}{y_M} \times (-x_G \times \sin \alpha_0 + y_G \times \cos \alpha_0) = 0$$

On note :
$$y'_G = y_G + \Delta y$$

Ainsi,
$$R_n = 0 \Rightarrow \alpha_0 = \arctan(\frac{y_G'}{x_G}) = \arctan(\frac{y_G + \Delta y}{x_G})$$

Inclinaison maximale, α en degré



Décalage du centre de gravité, Ay en cm

Sommaire

Introduction

- 1 Introduction
- 3 Résolution du problème
- 4 Conclusion

Confusion

Un degré d'inclinaison maximal très inférieur à 30°.

⇒ Un dispositif impossible à mettre en place

La vitesse du tapis est aussi source de problème!

Résolution du problème

Des recherches en cours

Un dispositif développé par la société japonaise <u>Mitsubishi</u> Electric.

Annexe

```
from PIL import Image
img= Image.open('C:/Users/robin/OneDrive/Documents/tipemontecarlo/photo10.jpg'
h=600
1=500
for y in range(h):
    for x in range(1):
        r,v,b=img.getpixel((x,y))
        if r<10 and v<10 and b<10:
            img.putpixel((x,y),(0,0,0))
        if r>200 and v<200:
            img.putpixel((x,y),(255,0,0))
        if b>200 and r<150:
            img.putpixel((x,y),(0,0,255))
        if r>200 and v>200 and b<100:
            img.putpixel((x,y),(255,255,0))
        if r>200 and v>200 and b>200:
            img.putpixel((x,y),(255,255,255))
        if r<100 and v>200 and b<100:
            img.putpixel((x,y),(0,255,0))
```

Annexe

```
lef ExtractionPoints(n):
   B-[] ## Liste des points en bleu
   R=[] ## En rouge (métal)
  D-[] ## En blanc (homme+métal)
   J=[] ## En jaune
       p-rd.randrange(1,1-1)
       q=rd.randrange(1,h-1)
      ro, ve, bl=img.getpixel((p,q))
       if ro==255 and ve!=255 and bl!=255:
           R.append(np.array([p,q]))
       if ve==255 and ro==255 and bl!=255:
          V.append(np.array([p,q]))
       if b1--255 and ve!-255 and ro!-255:
           B.append(np.array([p,q]))
       if b1==255 and ve==255 and ro==255:
          D.append(np.array([p.q]))
       if bl!-255 and ve--255 and ro!-255:
           J.append(np.array([p.q]))
   return B,R,V,D,J
```