Épreuves orales des concours d'entrée aux grandes écoles

Les énoncés marqués d'une étoile seront corrigés ultérieurement

Le comité de rédaction remercie Walter Appel, Marc Becker, Anne-Laure Biolley, Jean-Paul Bonnet, Laurent Bonavero, Olivier Bouverot, Laurent-Yvon Chaumard, Denis Choimet, Pierre-Jean Desnoux, Jean-Denis Eiden, Stéphane Flon, Cyril Germain, Max Hochart, Jean-Claude Jacquens, Denis Jourdan, Roger Mansuy, Renaud Palisse, Alain Pommellet, Franz Ridde, Eddy Routin, Pierre-Alain Sallard, Cécile Stérin pour leurs contributions à cette liste d'exercices.

Le comité tient à remercier tout particulièrement Igor Kortchemski et Omid Amini, qui l'ont autorisé à exploiter la liste d'exercices mise en ligne à l'adresse suivante :

https://www.ens.fr/sites/default/files/2019_mathsulm_sujets-1.pdf.

Les lecteurs y trouveront également des indications et de très intéressants commentaires sur la façon dont l'interrogation est menée à l'oral de mathématiques de l'ENS Paris en filière MP. Le comité espère que cette belle initiative sera suivie par d'autres concours.

Les lecteurs désirant faire parvenir des solutions d'exercices à la rédaction sont priés de le faire avant le 16 février 2020, de préférence par courrier électronique en pdf et si possible en Tex à l'adresse : *exercices@rms-math.com*.

Écoles Normales Supérieures - MP

- **1.** $[P]^{\bigstar}$ L'ensemble des permutations de \mathbb{N} est-il dénombrable?
- **2.** [PLSR]* $^{\diamond}$ Si $n \in \mathbb{N}^*$, soit $\sigma(n)$ la somme des diviseurs de n dans \mathbb{N}^* . On dit qu'un élément $P \in \mathbb{N}^*$ est parfait si $\sigma(P) = 2P$.
- a) Soit $p \in \mathbb{N}^*$ tel que $2^p 1$ est premier. Montrer que p est premier.
- **b**) Montrer que, si p est un élément de \mathbb{N}^* tel que 2^p-1 est premier, alors 2^{p-1} (2^p-1) est parfait.

On admet dans la suite que tout nombre parfait pair est de la forme précédente. On considère un nombre parfait pair, que l'on écrit donc sous la forme $P=2^{p-1}~(2^p-1)$ où $p\in\mathbb{N}^*$ est tel que 2^p-1 est premier. Dans les question c, d, e, on suppose $p\neq 2$.

- c) Déterminer la classe de P modulo 12.
- d) Montrer que P-1 et P+1 ne sont pas des carrés.

- e) En considérant la classe de P-1 modulo 4 et celle de P+1 modulo 3, montrer que P-1 et P+1 ne sont pas parfaits.
- f) Montrer qu'il n'existe pas de couple de nombres parfaits consécutifs.
- g) Prouver le résultat admis.
- 3. [L] \star a) Soit α un nombre réel irrationnel. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe (p,q) de $\mathbb{Z} \times [\![1,n]\!]$ tel que $\left|\alpha \frac{p}{q}\right| < \frac{1}{qn}$.
- **b**) Soit $d \in \mathbb{N}^*$. On suppose que d n'est pas un carré parfait. Montrer que l'équation $a^2 db^2 = 1$ possède une solution $(a, b) \in \mathbb{Z}^2$ telle que $b \neq 0$.
- **4.** $[L]^{\bigstar}$ \diamond Montrer que, si m et n sont dans \mathbb{N}^* , n divise $\sum_{k=1}^n m^{k \wedge n}$.
- **5.** [P]* Pour $n \in \mathbb{N}^*$, g(n) désigne le nombre de diviseurs premiers de n comptés avec multiplicité; par exemple, $g(5^2)=2$. Calculer, pour $n \in \mathbb{N}^*$, $\sum_{d|n} (-1)^{g(d)}$.
- **6.** [SR] \star On note $\mathbb{Z}[i] = \{a + ib ; (a, b) \in \mathbb{Z}^2\}$. Pour $z \in \mathbb{Z}[i]$, soit $N(z) = |z|^2$.
- a) Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} . Déterminer ses éléments inversibles.
- **b)** Si x et y sont deux éléments de $\mathbb{Z}[i]$ et $x \neq 0$, montrer qu'il existe $(q, r) \in \mathbb{Z}[i]^2$ tel que y = qx + r et N(r) < N(x). En déduire que les idéaux de $\mathbb{Z}[i]$ sont principaux.
- c) Pour n et k dans \mathbb{N}^* , soit $s_{n,k} = \frac{1}{4} \sum_{\substack{x \in \mathbb{Z}[i] \\ N(x) = n}} x^k$. Montrer que $s_{n,k} \in \mathbb{Z}[i]$.
- 7. $[P]^*$ Pour $n \in \mathbb{N}^*$, soit g(n) le maximum des ordres des éléments de S_n . Pour quels n l'entier g(n) est-il impair?
- **8.** [P]* Pour $n \in \mathbb{N}^*$, on note g(n) le maximum des ordres des éléments de S_n . Montrer que $\forall k \in \mathbb{N}^*, \ \frac{g(n)}{n^k} \underset{n \to +\infty}{\to} +\infty$.
- **9.** [P] \star Les sous-groupes stricts de $(\mathbb{Q}, +)$ sont-ils monogènes?
- **10.** $[P]^{\bigstar}$ Soit G un groupe.
- a) On suppose que G possède un nombre fini de sous-groupes. Montrer que G est fini.
- **b**) Le résultat de la question précédente subsiste-t-il en remplaçant « fini » par « dénombrable »?
- **11.** [P]* Soient G un groupe, $\delta \in \mathbb{R}^{+*}$, E_{δ} l'ensemble des applications f de G dans \mathbb{R} telles que $\forall (x,y) \in G^2$, $|f(xy) f(x)f(y)| \leq \delta$.
- a) Montrer que, si $f \in E_{\delta}$ n'est pas bornée, alors $\forall (x,y) \in G^2$, f(xy) = f(x)f(y).
- **b)** Trouver C > 0 tel que, pour toute $f \in E_{\delta}$, on ait soit $\forall x \in G$, $|f(x)| \leq C$, soit $\forall (x,y) \in G^2$, f(xy) = f(x)f(y).

- 12. [P] \star Soit (G,.) un groupe. Si f est une fonction de G dans \mathbb{R} , on dit que f est un quasi-morphisme s'il existe C>0 tel que $\forall (x,y)\in G^2, \ |f(xy)-f(x)-f(y)|\leqslant C$ et que f est un quasi-caractère si $\forall (n,x)\in \mathbb{Z}\times G, \ f(x^n)=nf(x).$ Montrer que, pour tout quasi-morphisme M de G dans \mathbb{R} , il existe un unique quasi-morphisme qui est aussi un quasi-caractère Q de G dans \mathbb{R} tel que M-Q soit bornée.
- **13.** [PLSR] \star Soient $n \ge 2$ un entier, a et b deux éléments distincts de $\{1, \ldots, n\}$, $G_{a,b}$ le sous-groupe de S_n engendré par $(a \ b)$ et $(1 \ 2 \ldots n)$. À quelle condition a-t-on $G_{a,b} = S_n$?
- **14.** $[L]^{\bigstar}$ $^{\diamond}$ Montrer qu'il existe $P \in \mathbb{Z}[X]$ ayant huit racines de module 1, deux racines dans \mathbb{R}^{+*} , tel que P(0) = 1 et irréductible sur \mathbb{Q} .
- **15.** [P]* Soit $P \in \mathbb{R}[X]$ tel que $P(\mathbb{R}^{+*}) \subset \mathbb{R}^{+*}$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $(1+X)^n P$ soit à coefficients dans \mathbb{R}^+ .
- **16.** [P] $^{\diamond}$ Soit $n \in \mathbb{N}^*$. Trouver les fonctions f de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} telles que $\forall (X,Y) \in \mathcal{M}_n(\mathbb{R})^2, \ f(XY) \leqslant \min\{f(X), f(Y)\}.$
- 17. [P] * Soient $(m,n) \in \mathbb{N}^* \times \mathbb{N}^*$, A_1, \ldots, A_m des éléments idempotents de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire vérifiant $A_k A_k = A_k$. Montrer que $\sum_{i=1}^m (n \operatorname{rg}(A_i)) \geqslant \operatorname{rg}\left(I_n \prod_{i=1}^m A_i\right)$.
- **18.** [P]* \diamond Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ avec $B^2 = B$. Montrer que $\operatorname{rg}(AB BA) \leqslant \operatorname{rg}(AB + BA)$.
- **19.** [P] \star Soient $n \ge 2$ un entier, A et B dans $\mathcal{M}_n(\mathbb{R}), t_1, \ldots, t_{n+1}$ des nombres réels deux à deux distincts. Montrer que $\forall i \in \{1, \ldots, n+1\}, \ \det(A+t_iB) = 0$ si et seulement s'il existe deux sous-espaces V et W de \mathbb{R}^n tels que $A(V) \subset W, B(V) \subset W$ et $\dim(W) < \dim(V)$.
- **20.** [PLSR] \star Soient E un \mathbb{C} -espace vectoriel de dimension finie, $f \in \mathcal{L}(E)$. On dit que f est cyclique s'il existe $x \in E$ tel que $E = \{P(f)(x) \; ; \; P \in \mathbb{C}[X]\}$.
- a) On suppose que f est cyclique. Montrer que tout endomorphisme induit par f est cyclique et que l'ensemble des sous-espaces de E stables par f est fini.
- ${\it b}$) On suppose que l'ensemble des sous-espaces de E stables par f est fini. Montrer que f est cyclique.
- **21.** [L] \star Soient $n \in \mathbb{N}^*$, $A \in GL_n(\mathbb{Z})$. Montrer que soit A a une valeur propre de module strictement supérieur à 1, soit il existe $k \in \mathbb{N}^*$ tel que $A^k I_n$ est nilpotente.
- **22.** [P]* Soient $n \ge 2$ un entier, A et B dans $GL_n(\mathbb{C})$, X et Y dans \mathbb{C}^n .
- a) On suppose que $\forall k \in \mathbb{N}^*$, $A^k X = B^k Y$. Montrer que X = Y.
- **b)** Déterminer le plus petit N de \mathbb{N}^* tel que, pour toutes matrices $A, B \in \mathrm{GL}_n(\mathbb{C})$ et tous vecteurs X, Y de \mathbb{C}^n , la condition $\forall k \in \{1, \dots, N\}, A^k X = B^k Y$ implique X = Y.
- **23.** [P]* Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $P = \det(XI_n A)$. On pose $P = X^n + c_1X^{n-1} + \cdots + c_n = (X - z_1)\cdots(X - z_n)$.

a) Calculer de deux façons
$$\sum_{k=1}^n \frac{P(x)}{x-z_k}$$
 pour $x\in\mathbb{C}$ avec $|x|>\max_{1\leqslant i\leqslant n}|z_i|$.

$$\textbf{\textit{a})} \ \ \text{Calculer de deux façons} \ \sum_{k=1}^n \frac{P(x)}{x-z_k} \ \text{pour} \ x \in \mathbb{C} \ \text{avec} \ |x| > \max_{1 \leqslant i \leqslant n} |z_i|.$$

$$\textbf{\textit{b})} \ \ \text{Soit} \ k \in \llbracket 1,n \rrbracket. \ \text{Montrer} : c_k = \frac{(-1)^k}{k!} \left| \begin{array}{ccccc} \operatorname{tr}(A) & 1 & 0 & \cdots & 0 \\ \operatorname{tr}(A^2) & \operatorname{tr}(A) & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \operatorname{tr}(A^{k-1}) & & \ddots & \ddots & k-1 \\ \operatorname{tr}(A^k) & \operatorname{tr}(A^{k-1}) & \cdots & \operatorname{tr}(A^2) & \operatorname{tr}(A) \end{array} \right|.$$

- **24.** [P] \star Soient A et B deux matrices de $\mathcal{M}_2(\mathbb{R})$ telles que $\det(A) > 1$, $\det(B) > 1$ et AB = BA. On s'intéresse aux suites $(v_k)_{k \in \mathbb{N}}$ de vecteurs de \mathbb{R}^2 telles que $v_0 \neq 0$ et, pour tout $k \in \mathbb{N}$, $v_{k+1} = Av_k$ ou $v_{k+1} = Bv_k$. Montrer qu'il existe v_0 tel que toute suite ainsi définie de premier terme v_0 soit non bornée. Le résultat subsiste-t-il si on omet l'hypothèse AB = BA?
- **25.** [P] \star Soit $n \ge 2$ un entier.
- a) Soient A et B dans $\mathcal{M}_n(\mathbb{C})$, L la matrice de $\mathcal{M}_{n(n-1)^2,n}(\mathbb{C})$ dont les lignes sont les $A^iB^j-B^jA^i, 1\leqslant i,j\leqslant n-1$. Montrer que A et B ont un vecteur propre commun si et seulement si rg(L) < n.
- b) Montrer que l'ensemble des A de $\mathcal{M}_n(\mathbb{C})$ tels que A et tA n'admettent aucun vecteur propre commun est un ouvert dense de $\mathcal{M}_n(\mathbb{C})$.
- **26.** [P]* Soient $n \in \mathbb{N}^*$, (E, \langle , \rangle) un espace euclidien de dimension n, (e_1, \ldots, e_n) une base orthogonale de E. Si $1 \le i \le n$, soit $d_i = ||e_i||$. Soit $m \in \{1, \dots, n\}$. Montrer que les deux propriétés suivantes sont équivalentes :
- il existe un sous-espace V de E de dimension m telle que les projections orthogonales de e_1, \ldots, e_n sur V ont même norme.

- pour tout
$$i \in \{1, \dots, n\}$$
, on a ${d_i}^2\left(\sum_{j=1}^n \frac{1}{{d_j}^2}\right) \geqslant m$.

- 27. [L] \star Soit E l'espace des fonctions polynomiales de [-1,1] dans \mathbb{R} . On munit E du produit scalaire donné par $\forall (f,g) \in E^2, \langle f,g \rangle = \int_0^\pi f(\cos\theta) \, g(\cos\theta) \, \mathrm{d}\theta.$ Pour $n \in \mathbb{N},$ soient E_n le sous-espace de E constitué des fonctions polynomiales de degré au plus n, Π_n le projecteur orthogonal de E sur E_n . On fixe $g \in E$. Pour $n \in \mathbb{N}$, soit $M_{n,g}$ l'endomorphisme de E_n défini par $\forall f \in E_n, \ M_{n,g}(f) = \Pi_n(fg)$. Étudier asymptotiquement la suite $(\operatorname{tr}(M_{n,g}))_{n\in\mathbb{N}}.$
- **28.** [PLSR] \star Soient A et B dans $S_n(\mathbb{R})$. Comparer $\operatorname{tr}(ABAB)$ et $\operatorname{tr}(A^2B^2)$.
- **29.** [SR] \star On appelle parfait de \mathbb{R} toute partie non vide de \mathbb{R} fermée sans point isolé.
- a) Donner un exemple de parfait d'intérieur vide de \mathbb{R} .
- **b**) Donner un exemple de parfait de \mathbb{R} ne coupant pas \mathbb{Q} .

- **30.** [SR] \star Soient E un \mathbb{R} -espace vectoriel de dimension finie, v_1, \ldots, v_p des vecteurs de E, $C = \mathbb{R}^+ v_1 + \cdots + \mathbb{R}^+ v_p$. Montrer que C est fermé dans E.
- **31.** [P] \star a) Montrer que l'on ne peut partitionner \mathbb{R}^2 en cercles de rayons strictement positifs.
- b) Peut-on partitionner \mathbb{R}^2 en disques ouverts de rayons strictement positifs?
- c) On appelle triade toute partie de \mathbb{R}^2 homéomorphe à la réunion des trois segments reliant le point (0,0) aux points (0,1), (1,0) et (1,1). Montrer que l'on ne peut partitionner \mathbb{R}^2 en triades.
- **32.** [PLSR] \star On fixe $n \in \mathbb{N}^*$. Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite bistochastique lorsque tous ses coefficients sont positifs ou nuls et que la somme de ses coefficients sur une ligne ou une colonne quelconque vaut 1. On note $D_n(\mathbb{R})$ l'ensemble formé par ces matrices.
- a) Montrer que $D_n(\mathbb{R})$ est compact et connexe par arcs.
- **b**) On pose $F: M \in \mathcal{M}_n(\mathbb{R}) \mapsto (m_{i,j}^2)_{1 \leq i,j \leq n}$. Comparer $F(\mathcal{O}_n(\mathbb{R}))$ à $D_n(\mathbb{R})$.
- c) Est-ce que $F(\mathcal{O}_n(\mathbb{R}))$ est dense dans $D_n(\mathbb{R})$?
- d) Est-ce que $F(\mathcal{O}_n(\mathbb{R}))$ est connexe par arcs?
- 33. [PLSR] \star Soit φ une fonction convexe de \mathbb{R}^+ dans \mathbb{R}^+ telle que $\varphi(0) = 0$.
- a) Montrer que φ est continue.
- b) On note E_{φ} l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues par morceaux telles que $\varphi \circ |f|$ soit intégrable sur \mathbb{R} . Montrer que E_{φ} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ si et seulement s'il existe C>0 tel que : $\forall x \in \mathbb{R}^{+*}$, $\varphi(2x) \leqslant C\varphi(x)$.
- **34.** [P] \star Soient $n \in \mathbb{N}^*$, f une application continue de \mathbb{R}^n dans \mathbb{R} telle que, pour tout (x,y) de $\mathbb{R}^n \times \mathbb{R}^n$, $t \in [0,1] \mapsto f((1-t)x+ty)$ est monotone. Montrer qu'il existe une forme linéaire φ sur \mathbb{R}^n et une application continue monotone g de \mathbb{R} dans \mathbb{R} telles que $f = g \circ \varphi$.
- **35.** [P]* Soient E et F deux espaces vectoriels normés sur \mathbb{R} . Soit $f: E \to F$ telle que f(0) = 0 et que pour tout $(x,y) \in E^2$, ||f(x) f(y)|| = ||x y||.
- a) On suppose que $E=F=\mathbb{R}.$ Montrer que f est linéaire.
- b) On suppose que E=F et que la norme est euclidienne. Montrer que f est linéaire.
- ${\it c}$) On suppose que f est surjective. Montrer que f est linéaire.
- d) Donner un exemple dans lequel f n'est pas linéaire.
- **36.** [P]* Soient $s \in \mathbb{R}^{+*}$ et $(u_n)_{n\geqslant 1}$ la suite définie par $u_1=1, u_2=s$ et $\forall n\in \mathbb{N}^*, u_{n+2}=\frac{u_n\ u_{n+1}}{n}$. Étudier la convergence de $(u_n)_{n\geqslant 1}$.
- **37.** [PLSR]* Pour $d \in \mathbb{N}^*$, soit N(d) le nombre de couples (m,n) de $\mathbb{N}^* \times \mathbb{N}^*$ tels que $n \leqslant m$ et $\binom{m}{n} = d$.
- a) Montrer que $(i,j)\mapsto \binom{i+j}{j}$ est strictement croissante en i et en j.
- $\textbf{\textit{b}}) \ \ \text{En considérant } B = \min \bigg\{ b \in \mathbb{N}^* \ ; \ \binom{2b}{b} > d \bigg\}, \ \text{montrer que } N(d) = O(\ln(d)).$

c) Montrer que
$$\frac{1}{x} \sum_{d=1}^{x} N(d) \underset{x \to +\infty}{\rightarrow} 2$$
.

- **38.** [P]* Soient $(a_n)_{n\geqslant 0}$, $(b_n)_{n\geqslant 0}$ deux suites d'éléments de \mathbb{R}^+ telles que $\forall n\in\mathbb{N}, a_{n+1}\leqslant a_n+b_n$ et que $\sum b_n$ converge. Montrer que $(a_n)_{n\geqslant 0}$ converge.
- **39.** [P] \star Pour $\lambda \in]0,1[$, soit A_{λ} l'ensemble des k de \mathbb{N}^* tels que le nombre de 9 dans l'écriture décimale de k soit majoré par λn_k , où n_k est le nombre de chiffres de k. Étudier la sommabilité de $\left(\frac{1}{k}\right)_{k \in A_{\lambda}}$.
- **40.** [SR] * Soient f et g deux fonctions convexes continues de [0,1] dans $\mathbb R$ telles que $\forall x \in [0,1], \ \max(f(x),g(x)) \geqslant 0.$ Montrer qu'il existe $\lambda \in [0,1]$ tel que $\forall x \in [0,1], \ (1-\lambda)f(x) + \lambda \, g(x) \geqslant 0.$
- **41.** [P] \star Déterminer les fonctions dérivables f de \mathbb{R}^+ dans \mathbb{R} telles que : f(1) = 1 et $\forall (x, y) \in (\mathbb{R}^+)^2$, $f(x) f(y) \leq f(xy)$.
- **42.** [P]* On considère $n \in \mathbb{N}^*$ et f_1, \ldots, f_n des fonctions périodiques de \mathbb{R} dans \mathbb{C} telles que $g = f_1 + \cdots + f_n$ tende vers 0 en $+\infty$. Montrer que g = 0.
- **43.** $[SR]^{\bigstar}$ Soit f une fonction continue de $\mathbb R$ dans $\mathbb C$. Pour $t \in \mathbb R$, soit f_t la fonction définie par $\forall x \in \mathbb R$, $f_t(x) = f(x-t)$. Si $\varepsilon > 0$ et $T \in \mathbb R$, on dit que T est une ε -presque période de f si $\|f f_T\|_{\infty} \leqslant \varepsilon$. On dit que f est presque périodique si, pour tout $\varepsilon > 0$, il existe R > 0 tel que tout segment de longueur R de $\mathbb R$ contienne une ε -presque période de f.
- a) Donner des exemples de fonctions presque périodiques.
- b) Montrer qu'une fonction presque périodique est bornée.
- c) Montrer qu'une fonction presque périodique est uniformément continue.
- \emph{d}) On suppose que f est presque périodique.

Montrer que, si $(t_n)_{n\geqslant 0}$ est une suite réelle, il existe une extraction φ telle que, pour tout $\varepsilon>0$, il existe N tel que $\forall (p,q)\in\mathbb{N}^2, p,q\geqslant N\Rightarrow \|f_{t_{\varphi(p)}}-f_{t_{\varphi(q)}}\|_{\infty}\leqslant \varepsilon$. Qu'en déduit-on?

- e) La réciproque de la question précédente est-elle exacte?
- **44.** [P] \star Déterminer l'ensemble des nombres réels c tels qu'il existe une fonction deux fois dérivable f de \mathbb{R} dans \mathbb{R} telle que f' > f + c et f'' > f' + c.

45. [L]
$$\star$$
 Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$ et, pour $n \in \mathbb{N}$ et $f \in E$, $M_n(f) = \int_0^1 t^n f(t) dt$.

- a) Soient f et g dans E telles que $\forall n \in \mathbb{N}, \ M_n(f) = M_n(g)$. Montrer que f = g.
- **b**) Existe-t-il $f \in E$ telle que $\forall n \in \mathbb{N}, \ M_n(f) = \exp\left(-\frac{n^2}{10}\right)$?
- c) Existe-t-il $f \in E$ telle que $\forall n \in \mathbb{N}, \ M_n(f) = \frac{1}{1 + 10n^2}$?

46. [P]
$$\star$$
 Soit f une fonction continue de $\left[-\frac{1}{2},\frac{3}{2}\right]$ dans \mathbb{R} .

Montrer que
$$\int_{-1/2}^{3/2} x f(3x^2 - 2x^3) dx = 2 \int_0^1 x f(3x^2 - 2x^3) dx$$
.

- **47.** [PLSR] \star Le but de l'exercice est de montrer que $\ln(2)$ est irrationnel. On raisonne par l'absurde en considérant a et b dans \mathbb{N}^* tels que $\ln(2) = \frac{a}{b}$.
- a) Pour $n \in \mathbb{N}$, montrer qu'il existe $c_n \in \mathbb{Z}$ tel que

$$\int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x = (-1)^n \ln(2) + \frac{c_n}{\mathrm{ppmc}(1, 2, \dots, n)}.$$

- **b)** Soient $n \in \mathbb{N}^*$ et $P_n = \frac{1}{n!} (X^n (1-X)^n)^{(n)}$. Montrer qu'il existe $A_n \in \mathbb{Z}^*$ tel que $\int_0^1 \frac{P_n(x)}{dx} dx = \frac{A_n}{n}$
- $\int_0^1 \frac{P_n(x)}{1+x} \, \mathrm{d}x = \frac{A_n}{b \times \mathrm{ppmc}(1,2,\ldots,n)}.$ c) Soit, pour $n \in \mathbb{N}$, π_n le nombre de nombres premiers inférieurs ou égaux à n. On admet que $\pi_n \sim \frac{n}{\ln(n)}$. Montrer que, pour n assez grand, $\mathrm{ppmc}(1,2,\ldots,n) \leqslant 3^n$.
- d) Conclure.
- **48.** [L] \star Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 et 2π -périodique telle que : $\forall x \in \mathbb{R}, \ (f(x), f'(x)) \neq (0, 0).$
- a) Montrer que l'ensemble Z des zéros de f sur $[0, 2\pi[$ est fini.
- **b)** Soit g une fonction de classe C^1 de $\mathbb R$ dans $\mathbb R$ tendant vers 1 en $+\infty$, vers -1 en $-\infty$.

Montrer que
$$|Z| = -\frac{1}{2} \int_0^{2\pi} g' \left(\frac{f'}{f}(x)\right) \left(\frac{f'}{f}\right)'(x) dx.$$

- c) Montrer que $|Z| = -\frac{1}{\pi} \int_0^{2\pi} \frac{f''f f'^2}{f^2 + f'^2}$.
- **49.** [P] \star Soit $(p_n) \in \mathbb{R}^{\mathbb{N}}$ définie par $p_0 = p_1 = 1$ et, pour $n \ge 2$, $p_n = \int_0^1 \left(\int_0^{1-x_1} \dots \int_0^{1-x_{n-1}} \mathrm{d}x_n \, \mathrm{d}x_{n-1} \dots \right) \mathrm{d}x_1$. Calculer $\sum_{n=0}^{+\infty} p_n(\pi/6)^n$.
- **50.** [P] \star Soit f une fonction continue et de carré intégrable de \mathbb{R}^+ dans \mathbb{R} . Déterminer la limite en $+\infty$ de $x\mapsto e^{-x}\int_0^x f(t)\,e^t\,\mathrm{d}t$.
- **51.** [SR] \star Soient X une partie non vide d'un espace normé, $(f_n)_{n\geqslant 1}$ une suite de fonctions continues de X dans \mathbb{R} .
- a) On suppose que $(f_n)_{n\geqslant 1}$ converge uniformément sur X vers une fonction f. Montrer que f est continue.
- **b)** On suppose que X est compacte et que, pour toute suite $(x_n)_{n\geqslant 1}$ d'éléments de X et tout x de X tels que $x_n\to x$, on a $f_n(x_n)\to f(x)$. Montrer que f est continue et que la convergence est uniforme.

- **52.** [P] \star Soit f une fonction de $\mathbb R$ dans $\mathbb R$. On suppose qu'il existe une suite $(P_n)_{n\geqslant 0}$ de polynômes à coefficients dans $\mathbb R^+$ convergeant simplement vers f sur $\mathbb R$. Montrer que f est de classe C^∞ sur $\mathbb R$.
- **53.** [L] \star Soit $k \in \mathbb{N}$, $(a_n)_{n \geqslant k+1}$ une suite réelle telle que $\sum |a_n|$ converge et, pour $x \in \mathbb{R}$, $f(x) = \sum_{n=k+1}^{+\infty} a_n \cos(nx)$. Minorer le nombre de zéros de f sur $[-\pi, \pi[$.
- **54.** [P] \star Déterminer la limite en $+\infty$ de $\left(\sum_{k=1}^{+\infty} \frac{x^k}{k^k}\right)^{1/x}$.
- **55.** [PLSR]* Existe-t-il une fonction $g: \mathbb{R}_+ \to \mathbb{R}$ telle que, pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ somme d'une série entière, on ait f(x) = o(g(x)) quand x tend vers $+\infty$?
- **56.** [P]* Déterminer la limite de $\frac{1}{A} \int_1^A A^{1/x} dx$ lorsque A tend vers $+\infty$.
- **57.** [P] \star Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes suivant toutes la loi uniforme sur $\{-1,1\}$. Soit $\lambda\in]0,1[$.
- a) Montrer que, pour tout réel t, l'ensemble $A_t = \left(\sum_{n=0}^{+\infty} \lambda^n X_n \leqslant t\right)$ est un événement.
- **b)** Montrer que la fonction $t \in \mathbb{R} \mapsto \mathbf{P}(A_t)$ est continue.
- **58.** [PLSR] \star a) Soit A une partie de \mathbb{R}^n . Soit x dans l'enveloppe convexe de A. Montrer que x peut s'écrire comme combinaison convexe d'une famille de n+1 points de A.
- **b**) On munit \mathbb{R}^n de sa structure euclidienne standard. Soit T une partie de la boule unité fermée, et x un point de l'enveloppe convexe de T. Montrer que pour tout $k \in \mathbb{N}^*$ il existe

une liste
$$(x_1,\ldots,x_k)\in T^k$$
 telle que $\left\|x-\frac{1}{k}\sum_{i=1}^kx_i\right\|\leqslant \frac{1}{\sqrt{k}}\cdot$

Ind. Introduire des points deux à deux distincts y_1, \ldots, y_p de T et des réels positifs $\lambda_1, \ldots, \lambda_p$ tels que $x = \sum_{i=1}^p \lambda_i y_i$ et $1 = \sum_{i=1}^p \lambda_i$, puis considérer une variable aléatoire X telle que $\mathbf{P}(X = y_i) = \lambda_i$ pour tout $i \in [\![1,p]\!]$.

- **59.** [P] \star On considère une suite infinie de tirages à pile ou face avec une pièce équilibrée. On considère la variable aléatoire T donnant le premier instant k pour lequel il existe $i \in [\![1,k-1]\!]$ tel que k-i soit pair, les lancers aux instants k et i aient donné face, et les lancers à tous les instants strictement compris entre k et i aient donné pile. Montrer que T est d'espérance finie, et calculer son espérance.
- **60.** [P] ★ On lance une pièce équilibrée jusqu'à ce que le nombre de Pile soit égal au double du nombre de Face. Quelle est la probabilité de ne jamais s'arrêter?

61. [P] \star Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d de variables aléatoires à valeurs dans \mathbb{R}^+ . On suppose que, pour tout $x \in \mathbb{R}^+$, $\mathbf{P}(X_1 \geqslant x) > 0$.

Montrer l'équivalence entre les conditions suivantes :

- i) pour tout réel $\alpha > 1$, on a $\mathbf{P}(X_1 \geqslant \alpha x) = \underset{x \to +\infty}{=} o(\mathbf{P}(X_1 \geqslant x))$;
- ii) il existe une suite $(b_n)_{n\geqslant 1}$ divergeant vers $+\infty$ et telle que, pour tout $\varepsilon>0$,

$$\mathbf{P}\left(\left|\frac{1}{b_n}\max_{1\leqslant i\leqslant n}X_i-1\right|>\varepsilon\right)\underset{n\to+\infty}{\longrightarrow}0.$$

Écoles Normales Supérieures - PSI

62. \star \diamond Dénombrer les permutations de l'ensemble $\{1,\ldots,n\}$ dont les cycles, dans la décomposition en cycles à support disjoints, sont tous de longueur paire.

Écoles Normales Supérieures - PC

- **63.** \star Soit V un hyperplan de $\mathcal{M}_2(\mathbb{R})$ dont tous les éléments sont diagonalisables dans \mathbb{R} .
- a) Montrer que $I_2 \in V$.
- **b)** Donner un exemple de tel hyperplan V.
- c) Montrer qu'il existe $P \in GL_2(\mathbb{R})$ telle que $P^{-1}VP$ contienne toutes les matrices diagonales.
- *d*) Montrer qu'il existe $Q \in GL_2(\mathbb{R})$ telle que $Q^{-1}VQ = \mathcal{S}_2(\mathbb{R})$.
- **64.** \star \diamond Soit $f: \mathbb{R} \to \mathbb{R}$. On dit que f vérifie (*) si et seulement si : $\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y).$
- a) Déterminer les fonctions continues vérifiant (*).
- **b)** Si f vérifie (*) et si f n'est pas linéaire, montrer que le graphe de f est dense dans \mathbb{R}^2 .
- c) Déterminer les f vérifiant (*) et pour lesquelles il existe n > 1 tel que : $\forall x > 0, f(x^n) = f(x)^n.$
- **65.** \star Soient, pour $n \in \mathbb{N}^*$, $X_{i,j}$, $1 \leq i,j \leq n$, des variables aléatoires i.i.d suivant la loi uniforme sur $\{-1,1\}$, M_n la matrice aléatoire $(X_{i,j})_{1\leqslant i,j\leqslant n}$. a) Calculer $\mathbf{E}\left(\operatorname{tr}\left((M_n)^k\right)\right)$ pour $k\in\{1,2,3,4\}$.
- **b**) Calculer $\mathbf{E}(\det(M_n))$ et $\mathbf{E}((\det M_n)^2)$.
- c) Soit $f: \mathbb{R}^+ \to \mathbb{R}$ telle que $f(x) \to +\infty$ quand $x \to +\infty$.

Montrer que
$$\mathbf{P}\left(|\det(M_n)| \geqslant f(n)\sqrt{n!}\right) \underset{n \to +\infty}{\longrightarrow} 0.$$

École Polytechnique - MP

66. \star Soient a et b dans \mathbb{N}^* , $(x_n)_{n\in\mathbb{Z}}$ et $(y_n)_{n\in\mathbb{Z}}$ deux suites à valeurs dans un ensemble E, respectivement a-périodique et b-périodique. On suppose qu'il existe $a+b-a \wedge b$ entiers relatifs consécutifs tels que $x_n = y_n$. Montrer que $(x_n)_{n \in \mathbb{Z}} = (y_n)_{n \in \mathbb{Z}}$.

10

a) Pour $(x,y) \in \mathbb{Q}^2$, montrer que $v(xy) = v(x) + v(y), v(x+y) \geqslant \min(v(x), v(y))$. b) Pour $n \in \mathbb{N}^*$, montrer que $v(n!) < \frac{n}{p-1}$.

c) Soit $P = \sum_{k \in \mathbb{N}} a_k X^k \in \mathbb{Q}[X]$. Pour $i \in \mathbb{N}$, soit $v^{(i)}(P) = \min\{v(a_j) \; ; \; j \in \mathbb{N}, \; j \geqslant i\}$.

On fixe $m \in \mathbb{N}$, R = (X - m)P. Montrer que $\forall i \in \mathbb{N}$, $v^{(i+1)}(R) \geqslant v^{(i)}(P)$.

d) Soient $(d_n)_{n\in\mathbb{N}}\in\mathbb{Z}^{\mathbb{N}}$ et, pour $n\in\mathbb{N},$ $b_n=\sum_{k=0}^n\binom{n}{k}d_kp^k$. Montrer que, si la suite $(b_n)_{n\in\mathbb{N}}$ s'annule une infinité de fois, elle est identiquement nulle.

68. \star Soit G un groupe fini. Pour $x \in G$, on note \overline{x} la classe de conjugaison de x: $\overline{x} = \{qxq^{-1} : q \in G\}$; on dit que x est ambivalent si $x^{-1} \in \overline{x}$.

a) Montrer que si une classe de conjugaison contient un élément ambivalent, alors tous ses éléments le sont.

b) Pour $x \in G$, soit $\rho(x)$ le nombre de $g \in G$ tels que $g^2 = x$. Montrer que $\frac{1}{|G|} \sum \rho(x)^2$ est le nombre de classes de conjugaison ambivalentes de G.

69. \star Soit P un polynôme complexe non nul ayant au moins deux racines distinctes et tel que P'' divise P.

a) Montrer que P est à racines simples.

b) Montrer que les racines de P sont alignées.

70. \star Soient $\lambda_1, \ldots, \lambda_d$ des nombres complexes de module au plus $1, P = \prod_{i=1}^{n} (X - \lambda_i)$.

Pour $n \in \mathbb{N}$, soit $f(n) = \sum_{i=1}^{d} \lambda_i^n$. On suppose que $P \in \mathbb{Z}[X]$.

a) Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$.

b) Montrer que f est périodique à partir d'un certain rang.

c) Montrer que, pour tout $i \in \{1, \dots, d\}$, λ_i est nul ou racine de l'unité.

71. \star Soient m_1, \ldots, m_n des éléments de \mathbb{N}^* , $x_1 < \cdots < x_n$ des nombres réels, $\lambda \in \mathbb{R}^{+*}$ et, pour $x \in \mathbb{R} \setminus \{x_i ; 1 \leqslant i \leqslant n\}$, $f(x) = \sum_{i=1}^n \frac{m_i}{x - x_i}$. Montrer que $f^{-1}([\lambda, +\infty[)])$ est une réunion finie d'intervalles bornés. Calculer la somme des longueurs de ces intervalles.

72. \star Pour $n \in \mathbb{N}^*$ et σ dans S_n , soit P_σ la matrice de permutation associée à σ . Pour $n \in \mathbb{N}$, soit $T_n = \sum_{\sigma \in \mathcal{S}_n} \det(I_n + P_\sigma).$

a) Calculer $\prod_{\omega \in \mathbb{U}_n} (1 + \omega)$.

- **b)** Pour $n \in \mathbb{N}^*$ et σ dans S_n , calculer $\det(I_n + P_{\sigma})$.
- c) Montrer que, pour tout $n \in \mathbb{N}^*$, $T_{n+1} = 2T_n + n(n-1)T_{n-1}$.
- d) Donner une formule simple pour T_n .
- 73. \star Soit $A \in \mathcal{M}_n(\mathbb{R})$. Comparer les polynômes minimaux de A dans $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$.
- **74.** \star Déterminer les $n \in \mathbb{N}^*$ tels qu'existe $A \in \mathcal{M}_n(\mathbb{R})$ de polynôme minimal $X^3 + 2X + 2$. Même question dans $\mathcal{M}_n(\mathbb{Q})$.
- **75.** \star Soit E un \mathbb{C} -espace vectoriel de dimension finie n > 0.
- a) Montrer que pour tout $u \in GL(E)$ il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$, et justifier que $\deg I_u < n$.
- **b**) Étudier la continuité de $u \in GL(E) \mapsto I_u \in \mathbb{C}_{n-1}[X]$.
- **76.** \star Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que la classe de similitude de M est connexe par arcs si et seulement si M est diagonalisable.
- 77. * Soient $C = [-1,1]^2$ et $f \in \mathcal{L}(\mathbb{R}^2)$. Étudier la suite $(f^{\circ n})_{n\geqslant 0}$ sous les hypothèses suivantes : i) $f(C) \subset [-1/2,1/2]^2$, ii) $f(C) \subset [-1,1[^2,$ iii) $f(C) \subset C$.
- **78.** \star Soient C l'algèbre des fonctions continues de [0,1] dans \mathbb{R} , A une sous-algèbre de C, \overline{A} l'adhérence de A pour la norme $\| \cdot \|_{\infty}$.
- a) Montrer que, si f et g sont dans \overline{A} , il en est de même de $\min(f,g)$.
- **b**) Soient $m \in \mathbb{N}^*$, f_1, \ldots, f_m dans \overline{A} . Montrer que $\min(f_1, \ldots, f_m)$ et $\max(f_1, \ldots, f_m)$ sont dans \overline{A} .

On suppose désormais que A sépare les points : pour a et b dans [0,1] distincts, il existe $f \in A$ telle que $f(a) \neq f(b)$.

c) Soient a et b deux éléments distincts de [0,1], α et β deux nombres réels. Montrer qu'il existe $f \in A$ tel que $f(a) = \alpha$ et $f(b) = \beta$.

On admet que, de tout recouvrement ouvert de [0,1], on peut extraire un recouvrement fini.

- d) Soit $f \in C$. Montrer que, pour $\varepsilon \in \mathbb{R}^{+*}$ et $x \in [0,1]$, il existe $g_x \in \overline{A}$ telle que $g_x(x) = f(x)$ et $g_x \leqslant f + \varepsilon$.
- e) Montrer que $\overline{A} = C$.
- **79.** * Soient $\theta_1, \theta_2, \dots, \theta_n \in \mathbb{R}$ avec $0 < \theta_1 < \theta_2 < \dots < \theta_n < 1$ et $a_1, \dots, a_n \in \mathbb{R}$. On suppose que la suite de terme général $u_p = \sum_{j=1}^n a_j \cos(\pi p \, \theta_j)$ tend vers 0. Montrer : $\forall j \in \{1, \dots, n\}, \, a_j = 0.$
- **80.** \star Si $(u_n)_{n\in\mathbb{N}^*}$ est dans $\mathbb{R}^{\mathbb{N}^*}$, soit $(v_n)_{n\geqslant 2}$ définie par $\forall n\geqslant 2,\ v_n=\frac{1}{\ln(n)}\sum_{k=1}^n\frac{u_k}{k}$.
- a) Que dire de $(v_n)_{n\geqslant 2}$ si $(u_n)_{n\geqslant 1}$ converge vers le réel ℓ ?

- b) On suppose que u_n est égal à 1 si le premier chiffre de l'écriture de n en base 10 est 1, à 0 sinon. On pose, pour $n \in \mathbb{N}^*$, $w_n = \frac{1}{n} \sum_{i=1}^n u_k$. Étudier la convergence de $(v_n)_{n \geqslant 2}$, puis celle de (w_n) .
- **81.** \star Si f est une fonction de \mathbb{N}^* dans \mathbb{R} , on note M(f) la fonction de \mathbb{N}^* dans \mathbb{R} telle que $\forall n \in \mathbb{N}^*, \ M(f)(n) = \frac{1}{n} \sum_{i=1}^n f(k).$
- a) Montrer que, pour toute fonction f de \mathbb{N}^* dans \mathbb{R} , $\forall n \in \mathbb{N}^*$, $M^{(k)}(f)(n) \xrightarrow[k \to +\infty]{} f(1)$.
- **b)** Montrer que, si f est polynomiale, il en est de même de M(f).
- **82.** \star Si $k \in \mathbb{N}^*$, soit d(k) le nombre de diviseurs de k dans \mathbb{N}^* .
- a) Pour $n \in \mathbb{N}^*$, soit $D_n = \sum_{k=0}^n d(k)$. Donner un équivalent de D_n .
- **b**) Soit γ la constante d'Euler. Montrer que $D_n = n \ln(n) + (2\gamma 1)n + O\left(\sqrt{n}\right)$.
- 83. \star On fixe un nombre premier p. On note \mathbb{F}_p le corps $\mathbb{Z}/p\mathbb{Z}$, \mathcal{P} l'ensemble des polynômes unitaires de $\mathbb{F}_n[X]$, H le demi-plan des nombres complexes de partie réelle strictement supérieure à 1.
- a) Soit $s \in H$. Montrer que la famille $(p^{-s \deg(F)})_{F \in \mathcal{P}}$ est sommable : on note $\xi(s)$ sa somme dans la suite de l'énoncé.
- b) On note \mathcal{D} l'ensemble des polynômes unitaires de $\mathbb{F}_p[X]$ qui sont sans facteur carré, autrement dit sans facteur multiple dans leur décomposition en facteurs irréductibles. Soit

$$s \in H$$
. On note $\xi_2(s) = \sum_{F \in \mathcal{D}} p^{-s \deg(F)}$. Montrer que $\xi(2s) = \frac{\xi(s)}{\xi_2(s)}$.

- c) Soit $k \ge 2$ entier. Montrer qu'il y a exactement $p^k p^{k-1}$ polynômes unitaires de $\mathbb{F}_p[X]$ de degré k et sans facteur carré.
- **84.** \star Soit *I* un intervalle de \mathbb{R} non trivial.
- a) Montrer qu'il n'existe pas de $R \in \mathbb{R}(X)$ sans pôle dans I tel que $x \in I \mapsto R(x) e^{-x^2}$ soit une primitive de $x \in I \mapsto e^{-x^2}$.
- **b)** Soient $G \in \mathbb{R}(X)$ sans pôle dans $I, H \in \mathbb{R}[X, Y]$. On suppose: $\forall x \in I$, $H(x, e^{G(x)}) = 0$. Montrer que H = 0.
- **85.** \star On note E l'espace vectoriel $\mathcal{C}^0([0,1],\mathbb{R})$. Une suite $(g_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ est appelée base de type S lorsque pour tout $f\in E$ il existe une unique suite $(c_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ telle que

$$f = \sum_{n=0}^{+\infty} c_n g_n$$
 avec convergence uniforme.

- a) Montrer qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments deux à deux distincts de [0,1] telle que
- $x_0 = 0, x_1 = 1, \text{ et } \{x_n \mid n \in \mathbb{N}\} \text{ soit dense dans } [0, 1].$ **b)** Soit $(g_n)_{n \in \mathbb{N}}$ une base de type S. Montrer que $\left(\frac{g_n}{\|g_n\|}\right)_{n \in \mathbb{N}}$ est une base de type S.

- c) Soit $f \in E$. Pour tout $n \in \mathbb{N}^*$, on note F_n la fonction de [0,1] dans \mathbb{R} qui est continue, affine sur chaque intervalle ouvert inclus dans $[0,1] \setminus \{x_0,\ldots,x_n\}$, et coïncide avec f en x_0,\ldots,x_n . Montrer que $(F_n)_{n\geqslant 1}$ converge uniformément vers f sur [0,1].
- d) En déduire l'existence d'une base de type S.
- **86.** \star *a*) Soient $(a,b) \in \mathbb{R}^2$ tel que a < b, g une fonction continue par morceaux de [a,b] dans \mathbb{C} . Montrer que $\int_a^b g(t) \sin(\lambda t) dt \underset{\lambda \to +\infty}{\to} 0$.
- **b**) Soit f une fonction de classe C^1 par morceaux et 2π -périodique de $\mathbb R$ dans $\mathbb C$. Pour $k\in\mathbb Z$, soit $c_k=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\,e^{-ikt}\,\mathrm{d}t.$

 $\text{Montrer que, pour } t \in \mathbb{R}, \sum_{k=-n}^n c_k e^{ikt} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2} \left(f(t^+) + f(t^-) \right).$

- 87. \star a) La fonction g est définie par g(0)=0 et $\forall x\in\mathbb{R}^*,\ g(x)=\exp\left(-\frac{1}{x^2}\right)$. Montrer que g est de classe C^∞ sur \mathbb{R} mais n'est développable en série entière sur aucun intervalle ouvert contenant 0.
- **b**) Soit f une fonction de classe C^{∞} de \mathbb{R} dans \mathbb{R} . Montrer que f est développable en série entière en 0 si et seulement s'il existe a>0, M>0, A>0 tels que : $\forall n\in\mathbb{N},\ \forall x\in[-a,a],\ |f^{(n)}(x)|\leqslant MA^nn!.$
- c) Établir l'existence de A > 0 tel que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |g^{(n)}(x)| \leq (n!)^{3/2} A^n$.
- **88.** \star Soient R>0 et $(a_n)_{n\geqslant 1}\in\mathbb{C}^{\mathbb{N}^*}$ avec $a_1\neq 0$. On suppose que le rayon de convergence de $\sum a_nz^n$ est supérieur ou égal à R. On cherche à construire $(b_n)_{n\geqslant 1}\in\mathbb{C}^{\mathbb{N}^*}$ telle que $g:z\mapsto\sum_{n=1}^{+\infty}b_nz^n$ ait un rayon de convergence >0 et $(f\circ g)(z)=z$ au voisinage de 0.
- a) Montrer qu'il existe une unique suite $(b_n)_{n\in\mathbb{N}^*}\in\mathbb{C}^{\mathbb{N}^*}$ telle que : (*) :

$$\forall N \in \mathbb{N}^*, f\left(\sum_{n=1}^N b_n z^n\right) = z + o(z^N)$$

b) Soit $(A_n)_{n\geqslant 1}\in (\mathbb{R}^+)^{\mathbb{N}^*}$ telle que $A_1=|a_1|$ et, pour $n\in \mathbb{N}^*, A_n\geqslant |a_n|$. On suppose que le rayon de convergence de $\sum A_n z^n$ est strictement positif. On définit, au voisinage de 0, la

fonction $F: z \mapsto A_1 z - \sum_{n=2}^{+\infty} A_n z^n$. On considère la suite $(B_n)_{n\geqslant 1} \in \mathbb{C}^{\mathbb{N}^*}$ telle que, pour

tout
$$N \in \mathbb{N}^*$$
, $F\left(\sum_{n=1}^N B_n z^n\right) = z + o(z^N)$. Montrer que, pour tout $N \in \mathbb{N}^*$, $B_n \geqslant |b_n|$.

c) Soit $r \in]0, R[$ et $M = \sum_{n=1}^{+\infty} |a_n| r^n$. Pour $N \in \mathbb{N}^*$, on pose $A_N = \frac{M}{r^N}$. Montrer que les rayons de convergence de $\sum_{n=1}^{+\infty} B_n z^n$ et de $\sum_{n=1}^{+\infty} b_n z^n$ sont strictement positifs.

d) Conclure.

- **89.** * Pour $x \in]-1, 1[$ et $n \in \mathbb{N}^*$, soit $P_n(x) = \prod_{i=1}^n \frac{1}{1-x^k}$.
- a) Montrer que, si $x \in]-1,1[,(P_n(x))_{n\geqslant 1}$ converge. On note P(x) la limite.
- **b**) Montrer que, pour $x \in]-1,1[$, $P(x)=1+\sum_{n=1}^{+\infty}p_nx^n,$ où, pour $n \in \mathbb{N}^*,$ p_n est le nombre de façons d'écrire n comme somme d'éléments de \mathbb{N}^* sans tenir compte de l'ordre.
- c) Montrer que, lorsque $x \to 1^-$, $P(x) = \exp\left(\frac{\pi^2}{6(1-x)}(1+o(1))\right)$.
- **d)** Montrer que, lorsque $n \to +\infty$, $p_n \leqslant \exp\left(\pi\sqrt{\frac{2n}{3}}\left(1+o(1)\right)\right)$.
- **90.** \star On munit \mathbb{R}^n de la norme euclidienne canonique, notée $\| \cdot \|$ et on considère $\rho \in \mathbb{R}^{+*}$, vune application de \mathbb{R}^n dans lui-même ρ -lipschitzienne pour $\|\cdot\|$, X une application de classe C^1 telle que $\forall t \in [0,1], \ X'(t) = v(X(t))$. Soit $N \in \mathbb{N}^*$. Pour $k \in \{0,\ldots,N\}$, on pose $X_k^N = X\left(\frac{k}{n}\right) \text{ et on définit par récurrence } \xi_0^N = X(0) \text{ et si } k \geqslant 1, \xi_k^N = \xi_{k-1}^N + \frac{1}{N}v(\xi_{k-1}^N).$ On note pour $k \in \{0,\dots,N\}, \, \varepsilon_k^N = \|\xi_k^N - X_k^N\| \text{ et } \varepsilon^N = \max\{\rho_k^N \; ; \; k \in \{0,\dots,N\}\}.$ Montrer que $\varepsilon^N \to 0$ quand $N \to +\infty$.
- 91. \star On note G le groupe des bijections affines du \mathbb{C} -espace vectoriel \mathbb{C} dans lui-même.
- a) Montrer que G est isomorphe au groupe des matrices de la forme $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ où $(a,b) \in$
- **b)** Pour $g \in G$, on note (a_q, b_q) l'unique couple de complexes tel que $g: z \mapsto a_q z + b_q$. À
- quelle condition sur (a_g,b_g) l'application g admet-elle un unique point fixe? c) Soit $(g_1,g_2,g_3)\in G^3$. On pose $h=g_1^3g_2^3g_3^3$. Calculer a_h et b_h en fonction des a_{g_i} et b_{g_i} .
- d) On admet que si $a_{g_1}a_{g_2}a_{g_3}=j$ et si a_{g_1},a_{g_2},a_{g_3} sont tous distincts de j, alors

$$b_h = -j^2 a_{g_1}^2 a_{g_2} (a_{g_1} - j)(a_{g_2} - j)(a_{g_3} - j)(\alpha + \beta j + \gamma j^2),$$

où α, β, γ désignent les points fixes respectifs de g_2g_3, g_3g_1 et g_1g_2 .

On se donne un triangle direct ABC du plan complexe. On note respectivement a, b, c les mesures principales des angles orientés $(\overrightarrow{AB}, \overrightarrow{AC}), (\overrightarrow{BC}, \overrightarrow{BA})$ et $(\overrightarrow{CA}, \overrightarrow{CB})$. On note α l'unique point tel que $\frac{b}{3}$ soit une mesure de $(\overrightarrow{BC},\overrightarrow{B\alpha})$ et $\frac{c}{3}$ soit une mesure de $(\overrightarrow{C\alpha},\overrightarrow{CB})$; β l'unique point tel que $\frac{a}{3}$ soit une mesure de $(\overrightarrow{A\beta},\overrightarrow{AC})$ et $\frac{c}{3}$ soit une mesure de $(\overrightarrow{CA},\overrightarrow{C\beta})$; γ l'unique point tel que $\frac{\ddot{a}}{3}$ soit une mesure de $(\overrightarrow{AB},\overrightarrow{A\gamma})$ et $\frac{\ddot{b}}{3}$ soit une mesure de $(\overrightarrow{B\gamma},\overrightarrow{BA})$. Montrer que le triangle $\alpha\beta\gamma$ est équilatéral. On appliquera ce qui précède en prenant pour g_1 (resp. g_2, g_3) la rotation de centre A (resp. B, C) et d'angle de mesure $\frac{2a}{3}$ (resp. $\frac{2b}{3}, \frac{2c}{3}$).

- **92.** \bigstar Soient φ une fonction de classe C^1 de \mathbb{R}^2 dans \mathbb{R} , $Z=\varphi^{-1}\{0\}$. a) Soit $z\in Z$ tel que $\nabla \varphi(z)\neq 0$. Que dire de Z au voisinage de z?

- b) On suppose que Z compacte, non vide, et que $\nabla \varphi$ ne s'annule pas sur Z. Quelle est l'image de $z \in Z \mapsto \frac{\nabla \varphi(z)}{\|\nabla \varphi(z)\|}$?
- 93. \star Soient c et λ deux éléments de $]0,1[,(X_n)_{n\geq 0}$ une suite de variables aléatoires réelles définie sur un espace probabilisé (Ω, \mathcal{F}, P) telle que $X_0 = c$ et, pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ $\mathbf{P}(X_{n+1} = (1 - \lambda)x + \lambda \mid X_n = x) = x, \ \mathbf{P}(X_{n+1} = (1 - \lambda)x \mid X_n = x) = 1 - x.$
- a) Montrer que, si $n \in \mathbb{N}$, X_n est presque sûrement à valeurs dans [0,1] et que l'ensemble $\{x \in [0,1[; \mathbf{P}(X_n=x) > 0]\}$ est de cardinal majoré par 2^n .
- **b**) Si $n \in \mathbb{N}$, calculer $\mathbf{E}(X_n)$.
- c) Montrer qu'il existe $\mu_2 > 0$ tel que $\forall n \in \mathbb{N}, |\mathbf{E}(X_n^2) c| \leq \exp(-\mu_2 n)$.
- d) Soit $p \in \mathbb{N}^*$. Montrer qu'il existe $\mu_p > 0$ et $m_p > 0$ tels que $\forall n \in \mathbb{N}, \ |\mathbf{E}(X_n^p) - c| \leqslant m_p \ \exp(-\mu_p n).$ e) Si $t \in \mathbb{R}^{+*}$, quelle est la limite de la suite $(\mathbf{E}(t^{X_n}))_{n \geqslant 0}$?
- **94.** \star Soit $n \in \mathbb{N}^*$. On considère une famille $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires indépendent $(X_{i,j})_{1 \leqslant i,j \leqslant n}$ de variables aléatoires dantes suivant toutes la loi de Bernoulli de paramètre $\frac{1}{2}$. On note A l'événement : la matrice

$$(X_{i,j})_{1\leqslant i,j\leqslant n}$$
 est inversible. Montrer que $\mathbf{P}(A)\geqslant\prod_{k=1}^{+\infty}\left(1-\frac{1}{2^k}\right)$.

- **95.** \star Soient $n \in \mathbb{N}^*$, M une matrice aléatoire de $\mathcal{M}_{n+1}(\mathbb{R})$ dont les coefficients sont des variables aléatoires i.i.d. suivant la loi uniforme sur $\{-1,1\}$, N une matrice aléatoire de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients sont des variables aléatoires i.i.d. suivant la loi uniforme sur $\{0,1\}$. Montrer que $\mathbf{P}(M \in \mathrm{GL}_{n+1}(\mathbb{R})) = \mathbf{P}(N \in \mathrm{GL}_n(\mathbb{R}))$.
- **96.** \star Soit $n \in \mathbb{N}^*$.
- a) Montrer que $\sum_{k=1}^{+\infty} \frac{kn^{k-1}}{(n+k)!} = \frac{1}{n!}.$
- b) Soient X_1, \dots, X_n des variables aléatoires i.i.d. suivant la loi de Poisson de paramètre 1.

On pose
$$S_n = \sum_{i=1}^n X_i, T_n = \frac{S_n - n}{\sqrt{n}}$$
. Montrer que $\int_0^{+\infty} \mathbf{P}(T_n \geqslant x) \ \mathrm{d}x = \sqrt{n} \left(\frac{n}{e}\right)^n \frac{1}{n!}$.

École Polytechnique - ESPCI - PC

97. \bigstar Soient $n \geqslant 3, a_1, \ldots, a_n$ des complexes de module 1. Montrer qu'il existe $z \in \mathbb{C}$ de $\text{module 1 tel que } \prod_{i=1} |z-a_i| = 1.$

Mines-Ponts - MP

98. $\star \diamond a$) Soit $n \in \mathbb{N}^*$. Montrer que $\forall (A, t) \in \mathcal{M}_n(\mathbb{R}) \times \mathbb{R}^+$, $\det(A^2 + tI_n) \geqslant 0$.

- **b**) On suppose $n \in \mathbb{N}$ impair. Montrer que $-I_n$ n'est pas somme de deux carrés de $\mathcal{M}_n(\mathbb{R})$.
- **99.** \star Soient $A \in GL_n(\mathbb{C}), B = \begin{pmatrix} A & A^2 \\ A^{-1} & I_n \end{pmatrix}$. Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.
- **100.** \star Soient $n \in \mathbb{N}^*$, $m \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$, $B \in \mathcal{M}_m(\mathbb{C})$, $C \in \mathcal{M}_{n,m}(\mathbb{C})$. Montrer que $M=\left(\begin{array}{cc} A & C \\ 0 & B \end{array}\right)$ est diagonalisable si et seulement si A et B sont diagonalisables et il existe $X \in \mathcal{M}_{n,m}(\mathbb{C}')$ tels que AX - XB = C.
- **101.** \star Soient $E = \mathcal{C}^0([0,1],\mathbb{C})$, g une surjection continue croissante de [0,1] sur lui-même et Φ l'endomorphisme de E défini par $\forall f \in E, \Phi(f) = f \circ g$. Soit V un sous-espace de dimension finie de E stable par Φ . Montrer que Φ induit un automorphisme φ de V dont la seule valeur propre est 1. En déduire que $\varphi = id_V$.
- **102.** \star Soient $n \in \mathbb{N}^*$, $\mathbb{U}_n(\mathbb{C})$ l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{C})$ telles que $t\overline{M}M = I_n$. a) Soit $A \in \mathbb{U}_n(\mathbb{C})$ symétrique. En considérant les parties réelle et imaginaire de A, montrer que A s'écrit e^{iS} où $S \in S_n(\mathbb{R})$. Réciproque?
- $\hat{\boldsymbol{b}}$) Soit $A\in\mathcal{M}_n(\mathbb{C})$. Montrer que $A\in\mathbb{U}_n(\mathbb{C})$ si et seulement si A s'écrit Oe^{iS} avec $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in S_n(\mathbb{R})$.
- 103. \star Soient C une partie convexe d'un espace normé réel E, D une partie de E telle que $C \subset D \subset \overline{C}$. Montrer que D est connexe par arcs.
- **104.** \star *a*) Si $n \in \mathbb{N}^*$, montrer que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.
- **b)** Montrer que, pour n=2 et n=3, $\mathcal{O}_n(\mathbb{Q})$ est dense dans $\mathcal{O}_n(\mathbb{R})$. Que dire pour nquelconque?
- **105.** \star Pour $n \in \mathbb{N}^*$, soit $\sigma(n)$ la somme des diviseurs de n dans \mathbb{N}^* . Donner un équivalent $de U_n = \sum_{k=1}^n \sigma(k).$
- **106.** * Nature de l'intégrale $\int_0^{+\infty} \frac{x}{1 + x^{\alpha} \sin^2(x)} dx$.
- **107.** \star Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{C})$. On pose [A, B] = AB BA, on suppose que A et B commutent avec [A,B]. Pour $t\in\mathbb{R}$, soit $f(t)=e^{tA}e^{tB}e^{-\frac{t^2}{2}[A,B]}$. a) Pour $k\in\mathbb{N}^*$, montrer que $A^kB-BA^k=kA^{k-1}[A,B]$.
- b) Trouver une équation différentielle vérifiée par f.
- **c)** Montrer que $e^{A+B} = e^A e^B e^{-\frac{[A,B]}{2}}$.
- 108. \star On considère une urne contenant a boules blanches et b boules rouges. Après chaque tirage, on remet c boules de la couleur tirée dans l'urne. On effectue n tirages et on note X la variable aléatoire donnant le nombre de boules rouges tirées.

- a) Déterminer la loi de X et calculer son espérance.
- **b**) On considère Y la variable aléatoire donnant le numéro du premier tirage pour lequel on tire une boule rouge. Montrer que Y admet une espérance et calculer la loi de Y.
- **109.** \star Soient $p \in]0,1[,(X_k)_{k\geqslant 1}$ une suite i.i.d. de variables aléatoires de Bernoulli de paramètre p. On pose $L_1=\max\{k\in\mathbb{N}^*\;;\;X_1=X_2=\cdots=X_k\}$ si cet ensemble est fini, $+\infty$ sinon.
- a) Montrer que L_1 est presque sûrement fini, donner sa loi, son espérance et sa variance.
- **b**) Si $L_1 < +\infty$, soit $L_2 = \max\{\ell \in \mathbb{N}^* \; ; \; X_{L_1+1} = X_{L_1+2} = \cdots = X_{L_1+\ell}\}$ si cet ensemble est fini, $+\infty$ sinon. Montrer que L_2 est presque sûrement fini, donner sa loi, son espérance et sa variance.

Mines-Ponts - PSI

110. \star Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe $P \in \mathbb{C}[X]$ tel que P(A) est diagonalisable et P'(A) est inversible. Montrer que A est diagonalisable.

Mines-Ponts - PC

- 111. $^{\diamond} \star$ Soient A et B deux événements indépendants de (Ω, \mathcal{T}, P) . On pose $Z = \mathbf{1}_A + \mathbf{1}_B$.
- a) Déterminer $Z(\Omega)$.
- **b)** Montrer qu'il existe $k \in Z(\Omega)$ tel que $P(Z = k) \ge 4/9$.

Centrale - MP

- **112.** \star Soient $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs. Pour $n\in\mathbb{N}^*$, soit $S_n=\sum_{k=1}^n a_k^2$. On suppose que $a_nS_n\underset{n\to+\infty}{\longrightarrow} 1$.
- a) Montrer que $\sum a_k^2$ diverge.
- **b**) Donner un équivalent de a_n

Centrale - PSI

- 113. \star Soit E un espace vectoriel normé de dimension finie.
- a) Montrer que les boules de E sont convexes.
- b) Soit C une partie convexe de E. On suppose que C est dense dans E. Montrer que C=E:
 - i) dans le cas où $E = \mathbb{R}$; ii) dans le cas général.

Centrale - PC

114. \star \diamond Soit $P \in \mathbb{R}[X]$. On suppose : $e^{2i\pi P(n)} \underset{n \to +\infty}{\longrightarrow} 1$. Montrer : $\forall n \in \mathbb{Z}, P(n) \in \mathbb{Z}$.