Première partie

- 1) Si B commute avec A alors les sous-espaces propres de A sont stables par B. Ces sous-espaces sont respectivement $\text{vect}(x_1), \ldots, \text{vect}(x_n)$ et leur stabilité par B est équivalente au fait que la matrice de B dans la base (x_1, \ldots, x_n) est diagonale.
- 2a) Soit λ une valeur propre de B : le sous-espace propre $\text{Ker}(B \lambda id_X)$ est non nul et stable par A_1, \ldots, A_p donc c'est X, ce qui implique $B = \lambda id_X$.
 - Remarque: cette propriété est fausse dans le cas d'un espace vectoriel réel. Par exemple dans \mathbb{R}^2 les seuls sousespaces stables par l'endomorphisme $A: (x,y) \longmapsto (-y,x)$ (quart de tour) sont $\{0\}$ et \mathbb{R}^2 pourtant A, qui commute avec lui-même, n'est pas un multiple de l'identité.
- 2b) Non. Soient x₁, x₂, x₃ trois vecteurs de C² deux à deux linéairement indépendants et A₁, A₂ les endomorphismes de C² définis par A₁(x₁) = 0, A₂(x₂) = 0, A₁(x₃) = A₂(x₃) = x₃. Si B ∈ L(C²) commute avec A₁ et A₂ alors d'après 1) les vecteurs x₁, x₂ et x₃ sont vecteurs propres de B et deux des trois valeurs propres au moins sont égales puisqu'on est en dimension 2. Ceci implique que B coïncide avec un multiple de l'identité sur l'une des trois bases extraite de (x₁, x₂, x₃) et donc que B est égal à ce multiple de l'identité. Pourtant il existe un sous-espace non trivial stable par A₁ et A₂ : vect(x₃).

Deuxième partie

- 3) On trouve $K_0F_0 q^{-2}F_0K_0 = 0$ par calcul sur la base (x_1, \dots, x_n) .
- 4) Clairement, pour $1 \leqslant k \leqslant n$, le sous-espace $X_k = \text{vect}(x_k, \dots, x_n)$ est stable par F_0 , de même que $X_{n+1} = \{0\}$. Montrons que ce sont les seuls. Si Y est un sous-espace stable par F_0 et $p = \dim Y$ alors $F_{0|Y}$ est un endomorphisme nilpotent d'indice inférieur ou égal à p, donc $Y \subset \text{Ker}(F_0^p) = X_{n-p+1}$. Par égalité des dimensions on conclut que $Y = X_{n-p+1}$. Les sous-espaces stables par F_0 et K_0 sont aussi les X_k , $1 \leqslant k \leqslant n+1$ car ces derniers sont manifestement stables par K_0 .
- 5) On trouve $K_0E_0 q^2E_0K_0 = 0$ par calcul sur la base (x_1, \ldots, x_n) .
- 6) Vérification facile par calcul sur la base $(x_1, ..., x_n)$.
- 7) Il faut chercher parmi les sous-espaces X_k trouvés en 4) ceux qui sont stables par E_0 . Seuls $X_1 = X$ et $X_{n+1} = \{0\}$ conviennent.

Troisième partie

- 8) Immédiat.
- 9) Sinon, les sous-espaces Y_{q-2λ}, Y_{q-4λ}, etc. seraient non nuls d'après la question précédente et le fait que K envoie un sous-espace sur un sous-espace de même dimension. Alors il existerait une infinité de complexes μ, de la forme q^{-2k}λ, valeurs propres de E; c'est imposible.
- 10) On vient de voir que 0 est l'unique valeur propre éventuelle de E, donc le polynôme caractéristique de E ne peut être que $(-t)^n$, et, d'après le théorème de Cayley-Hamilton, on a $E^n = 0$.
- 11) Prendre un vecteur propre de $E_{|Ker E|}$. Il y en a car on est dans C et Ker $E \neq \{0\}$ vu la question précédente $(n \neq 0 \text{ car } E \neq 0)$.

- 12a) Ker E est de dimension 1 car E est non nul et nilpotent. De plus, c'est un sous-espace stable par K d'après i), donc $K_{|Ker E}$ est une homothétie. On prend pour λ le rapport d'homothétie et pour x_1^0 un vecteur quelconque de Ker E.
- $\mathbf{12b}) \ \mathsf{E}^2 = 0 \ \mathsf{donc} \ \mathsf{Im} \, \mathsf{E} \subset \mathsf{Ker} \, \mathsf{E} = \mathsf{vect}(x_1^0). \ \mathsf{Ainsi} \ \mathsf{ii} \ \mathsf{existe} \ \mu \in \mathbf{C} \ \mathsf{tel} \ \mathsf{que} \ \mathsf{E} x_2^0 = \mu x_1^0 \ \mathsf{et} \ \mu \neq 0 \ \mathsf{car} \ x_2^0 \notin \mathsf{vect}(x_1^0) = \mathsf{Ker} \, \mathsf{E}.$
- 12c) (x_1, x_2^0) est une base de X donc il existe $\beta, \gamma \in \mathbf{C}$ tels que $Kx_2^0 = \beta x_1 + \gamma x_2^0$. On a alors $KEx_2^0 = Kx_1 = \lambda x_1$ et $q^2 EKx_2^0 = q^2 E(\beta x_1 + \gamma x_2^0) = q^2 \gamma x_1$ d'où $\gamma = q^{-2} \lambda$.
- $\mathbf{12d}) \ \alpha = \frac{\beta \, q^2}{\lambda (1-q^2)} \ \text{convient (le dénominateur est non nul car } q^2 \neq 1 \ \text{et } \lambda \in \text{spec}(K) \subset \mathbf{C}^* \ \text{d'après ii})).$

Quatrième partie

- 13) Vérification facile par récurrence sur m en écrivant $EF^{m+1} F^{m+1}E = (EF^m F^mE)F + F^m(EF FE)$.
- 14) Remarque :On a $E \neq 0$ sans quoi $K K^{-1} = (q q^{-1})(EF FE)$ serait nul ce qui contredirait i). Les résultats de la partie III sont donc applicables, en particulier E est nilpotent et Ker E est un sous-espace non nul stable par K. Il en résulte qu'il existe ν_1 , vecteur de Ker E propre pour K. On a alors par récurrence immédiate $K\nu_m = \lambda q^{2-2m}\nu_m$.
- 15) Conséquence de deux questions précédentes.
- 16a) Ce sont des vecteurs propres pour K associés à des valeurs propres distinctes.
- 16b) On est en dimension finie, donc il existe m_0 maximal tel que $(\nu_1, \ldots, \nu_{m_0})$ soit libre, et $m_0 \ge 1$ puisque $\nu_1 \ne 0$. le vecteur suivant, ν_{m_0+1} , est combinaison linéaire de ν_1, \ldots, ν_{m_0} par choix de m_0 , et il est nul d'après 16a). Les vecteurs suivants le sont aussi puisque ce sont des itérés de F sur ν_{m_0+1} .
- 16c) $\text{vect}(v_1, \dots, v_{m_0})$ est non nul, stable par K, E d'après 14) et 15), et aussi stable par F par construction des v_k et par le fait que $Fv_{m_0} = 0$. D'après \mathbf{v}), cet espace est égal à X et en particulier sa dimension, m_0 , est égale à n.
- $\text{16d) Car } E\nu_{n+1} = E\nu_{m_0+1} = 0 = (q-q^{-1})^{-2}(q^n-q^{-n})(q^{1-n}\lambda-q^{n-1}\lambda^{-1})\nu_n, \text{ et le seul facteur pouvant être nul est } q^{1-n}\lambda-q^{n-1}\lambda^{-1}.$
- 17) Pour $\lambda = q^{n-1}$ on retrouve les propriétés définissant K_0, E_0, F_0 au II. Pour $\lambda = -q^{n-1}$, le triplet (-K, E, -F), associé à la base $(\nu_1, -\nu_2, \nu_3, \dots, (-1)^{n-1}\nu_n)$ satisfait à ces mêmes propriétés définissantes.