Polytechnique MP 2017 - Épreuve B - corrigé

Préliminiaires

1. Les fonctions \sqrt{m} et $f\sqrt{m}$ sont L^2 (on sous-entendra : "sur \mathbb{R} ") car m et f^2m sont L^1 , donc leur produit fm est intégrable.

D'après l'inégalité de Cauchy-Schwarz,

$$\left(\int f(x)m(x)\,\mathrm{d}x\right)^2 = \left(\int f(x)\sqrt{m(x)}\cdot\sqrt{m(x)}\,\mathrm{d}x\right)^2 \le \left(\int f(x)^2m(x)\,\mathrm{d}x\right)\cdot\left(\int m(x)\,\mathrm{d}x\right) = \int f(x)^2m(x)\,\mathrm{d}x$$

$$\mathrm{donc}\,\operatorname{Var}_m(f) > 0.$$

2.

- (2a.) On remarque que $x \ge e \Rightarrow h(x) \ge x$. On en déduit : $\forall x \ge 0$, $x \le \min(e, h(x))$. Par conséquent, pour tout $x \in \mathbb{R}$, $f(x)^2 m(x) \le \min(em(x), h(f(x)^2)m(x))$. Comme $x \mapsto em(x)$ et $x \mapsto h(f(x)^2)m(x)$ sont intégrables, on en déduit que f^2m est intégrable.
- (2b.) On pose $\varphi(x) = h(x) h(a) h'(a)(x a)$. Pour x > 0, $\varphi'(x) = h'(x) h'(a)$ et $\varphi''(x) = 1/x > 0$. On en déduit que φ' est strictement croissante sur $]0, +\infty[$. Comme $\varphi'(a) = 0$, φ est strictement décroissante sur [0, a] (continuité en 0) et strictement croissante sur $[a, +\infty[$. Or $\varphi(a) = 0$, donc $\forall x \ge 0$, $\varphi(x) > \varphi(a)$ si $x \ne a$.
- (2c.) On pose $a = \int f(x)^2 m(x) \, dx$. Si a = 0, la continuité de f et m montre que $f^2 m = 0$. Pour tout x, on a donc $f(x)^2 = 0$ ou m(x) = 0, donc $h(f(x))^2 m(x) = 0$. De là, $\operatorname{Ent}_m(f) = \int h(f(x)^2) m(x) \, dx h(a) = 0$. Si a > 0, on a d'après 2.b. : $h(f(x))^2 \ge h(a) + h'(a)(f(x)^2 a)$ pour tout $x \ge 0$. On multiplie par m(x) et on intègre, il vient : $\int h(f(x))^2 m(x) \, dx \ge h(a) + h'(a) \left(\int f(x)^2 m(x) \, dx a \right) = h \left(\int f(x)^2 m(x) \, dx \right)$, donc $\operatorname{Ent}_m(f) \ge 0$.
- (2d.) Nous montrons que les fonctions d'entropie nulle sont les fonctions constantes.

On reprend les calculs précédents. Dans le cas a=0, on obtient f=0 (identiquement) car m ne s'annule pas. Dans le cas a>0, l'égalité $\operatorname{Ent}_m(f)=0$ implique que $x\mapsto [h(f(x)^2)-h(a)-h'(a)(f(x)^2-a)]m(x)$ est nulle (car elle est positive et continue). Comme m ne s'annule pas, on obtient le cas d'égalité de 2b., donc $f(x)^2=a$ pour tout x, c'est-à-dire que f est constante (continuité).

Il est immédiat que les fonctions constantes sont d'entropie nulle, ce qui achève la preuve.

Partie I

3.

- (3a.) Pour tout $x \in \mathbb{R}$, $(\mu f')(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}f'(x)$ donc $(\mu f')'(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}[-2xf'(x) + f''(x)] = 2\mu(x)Lf(x)$, ce qui montre bien : $Lf = \frac{1}{2\mu}(\mu f')'$.
- (3b.) Les fonctions h_1' et h_2' sont continues et bornées, donc $h_1'h_2'\mu$ est L_1 . D'après 3a., $(\mu h_2')' = 2\mu L h_2$. On intègre formellement par parties :

 $\int h_1'(h_2'\mu) = [h_1(h_2'\mu)] - \int h_1 \cdot 2\mu L h_2.$

Le crochet est bien convergent et nul car h_1 et h_2' sont bornées et μ tend vers 0 en $\pm \infty$. On en déduit la convergence de la seconde intégrale, et l'égalité demandée.

4. Pour tout $y \in \mathbb{R}$, $(t,x) \mapsto f(x \cos t + y \sin t)\mu(y)$ est continue sur \mathbb{R}^2 (théorèmes généraux); pour tout $(t,x) \in \mathbb{R}^2$, $y \mapsto f(x \cos t + y \sin t)\mu(y)$ est continue sur \mathbb{R} (donc continue par morceaux); pour tout $t, x, y, |f(x \cos t + y \sin t)\mu(y)| \le ||f||_{\infty}\mu(y)$. Or $y \mapsto ||f||_{\infty}\mu(y)$ est intégrable, donc Φ_f est continue sur \mathbb{R}^2 .

5.

(5a.) Notons $F(t,x,y) = f(x\cos t + y\sin t)\mu(y)$. Mentionnons une fois pour toute qu'à (t,x) fixé, $y\mapsto F(t,x,y)$ est continue et intégrable.

Fixons $t \in \mathbb{R}$. D'après les théorèmes généraux, pour tout $y \in \mathbb{R}$, $x \mapsto F(t, x, y)$ est C^1 sur \mathbb{R} et sa dérivée est donnée par :

 $\frac{\partial F}{\partial x}(t, x, y) = (\cos t)f'(x\cos t + y\sin t)\mu(y).$

Remarquons que cette formule définit, pour tout x, une fonction continue de y.

Pour tout $x \in \mathbb{R}$ et $y \in \mathbb{R}$, $|(\cos t)f'(x\cos t + y\sin t)\mu(y)| \le ||f'||_{\infty}\mu(y)$. Cette dernière fonction est intégrable, et d'après le théorème de dérivation, la fonction $x \mapsto \Phi_f(t,x)$ est C^1 (attention, à t fixé!) et a pour dérivée : $\frac{\partial \Phi_f}{\partial x}(t,x) = \int (\cos t)f'(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y$.

Par un raisonnement identique au 4. (on domine l'intégrande par $y \mapsto ||f'||_{\infty} \mu(y)$), on constate que cette dérivée partielle définit une fonction continue sur \mathbb{R}^2 .

On fixe maintenant $x \in \mathbb{R}$. On a cette fois, pour tout $y \in \mathbb{R}$:

$$\frac{\partial F}{\partial t}(t, x, y) = (-x\sin t + y\cos t)f'(x\cos t + y\sin t)\mu(y).$$

Pour $(t,y) \in \mathbb{R}^2$, $|(-x\sin t + y\cos t)f'(x\cos t + y\sin t)\mu(y)| \le (|x| + |y|)||f'||_{\infty}\mu(y)$. Cette dernière fonction est continue et intégrable $(=o(e^{-|y|}) \text{ en } \pm \infty)$, donc le théorème de dérivation montre que $t \mapsto \Phi_f(t,x)$ est C^1 (à x fixé), de dérivée : $\frac{\partial \Phi_f}{\partial t}(t,x) = \int (-x\sin t + y\cos t)f'(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y$.

L'intégrande est continue par rapport à (t,x). Soit A>0. Pour tout $x\in [-A,A]$, pour tout $t\in \mathbb{R}$, on domine : $|(-x\sin t + y\cos t)f'(x\cos t + y\sin t)\mu(y)| \leq (A+|y|)\mu(y)$, fonction L^1 , et on conclut que $\frac{\Phi_f}{\partial t}$ est continue sur \mathbb{R}^2 .

Finalement, les deux dérivées partielles de Φ_f sont continues sur \mathbb{R}^2 , donc Φ_f est de classe C^1 sur \mathbb{R}^2 .

Fixons $t \in \mathbb{R}$. Pour tout $(x,y) \in \mathbb{R}^2$, $\frac{\partial^2 F}{\partial x^2}(t,x,y) = (\cos t)^2 f''(x\cos t + y\sin t)\mu(y)$. Or, pour tout $(x,y) \in \mathbb{R}^2$, $|(\cos t)^2 f''(x\cos t + y\sin t)\mu(y)| \le ||f''||_{\infty}\mu(y)$.

On en déduit que
$$\frac{\partial^2 \Phi_f}{\partial x^2}(t,x) = \int (\cos t)^2 f''(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y.$$

À nouveau, la continuité de $\partial_{xx}\Phi_f$ se démontre comme au 4., en dominant par $||f''||_{\infty}\mu(y)$. Cette domination montre en outre, pour tout $(t,x) \in \mathbb{R}^2$:

$$|\partial_{xx}\Phi_f(t,x)| \leq \int ||f''||_{\infty}\mu(y)\,\mathrm{d}y = ||f''||_{\infty}, \text{ donc } \partial_{xx}\Phi_f \text{ est born\'ee sur } \mathbb{R}^2.$$

- (5b.) La formule du 5a. montre : $\partial_x \Phi_f(t,x) = (\cos t) \Phi_{f'}(t,x)$.
- (5c.) $L\Phi_f(t,x) = \int \frac{1}{2} [(\cos t)^2 f''(x\cos t + y\sin t) x(\cos t)f'(x\cos t + y\sin t)]\mu(y) dy$

 $\operatorname{donc} (\sin t) L\Phi_f(t,x) = \frac{(\cos t)^2}{2} \int (\sin t) f''(x \cos t + y \sin t) \mu(y) \, \mathrm{d}y - x(\cos t) \int (\sin t) f'(x \cos t + y \sin t) \mu(y) \, \mathrm{d}y$

On remarque $\mu'(y) = -2y\mu(y)$, puis on intègre par parties (le crochet étant "convergent" et nul) :

$$\int (\sin t) f''(x\cos t + y\sin t)\mu(y) dy = [f'(x\cos t + y\sin t)\mu(y) dy] + 2\int f'(x\cos t + y\sin t)y\mu(y) dy = 2\int f'(x\cos t + y\sin t)\mu(y) dy.$$

Finalement, $(\sin t)L\Phi_f(t,x) = (\cos t)^2 f'(x\cos t + y\sin t)y\mu(y) dy - (\cos t)\int x\sin t f'(x\cos t + y\sin t)\mu(y) dy = (\cos t)\int (x\sin t - y\cos t)f'(x\cos t + y\sin t)\mu(y) dy = (\cos t)\partial_t\Phi_f(t,x).$

(5d.) Le membre de droite ne dépend pas de t, on va montrer que le membre de gauche est constant.

Notons, pour tout $t \in \mathbb{R}$, $G(t) = \int \Phi_f(t, x) \mu(x) dx$.

Pour tout $x \in \mathbb{R}$, $t \mapsto \Phi_f(t, x)\mu(x)$ est C^1 sur \mathbb{R} , de dérivée $t \mapsto \partial_t \Phi_f(t, x)\mu(x)$.

Or $|\partial_t \Phi_f(t,x)| \leq \int (|x|+|y|)||f'||_{\infty} \mu(y) \, \mathrm{d}y = A|x|+B$ avec $A=||f'||_{\infty}$ et $B=||f'||_{\infty} \int |y| \mu(y) \, \mathrm{d}y$. On en déduit la domination : $|\partial_t \Phi_f(t,x) \mu(x)| \leq (A|x|+B) \mu(x)$. Cette fonction est intégrable, donc G est de classe C^1 sur $\mathbb R$ et $G'(t)=\int \partial_t \Phi_f(t,x) \mu(x) \, \mathrm{d}x$.

Pour $t \not\equiv \frac{\pi}{2} [\pi]$, on a donc, d'après 5c. : $G'(t) = \int (\tan t) L \Phi_f(t, x) \mu(x) dx$.

Avec 3a. puis 5b. : $\int L\Phi_f(t,x)\mu(x)\,\mathrm{d}x = \frac{1}{2}[\mu(x)\partial_x\Phi_f(t,x)] = \frac{1}{2}[\cos(t)\mu(x)\Phi_{f'}(t,x)] = 0 \text{ car } \Phi_{f'} \text{ est born\'ee}$ (par $||f'||_{\infty}$), d'où G'(t) = 0.

Comme G' est continue, on en déduit que G' est identiquement nulle, donc G est constante.

Or pour tout $x \in \mathbb{R}$, $\Phi_f(0,x) = \int f(x)\mu(y) dy = f(x)$, donc $G(0) = \int \Phi_f(0,x)\mu(x) dx = \int f(x)\mu(x) dx$.

6. Φ_f est continue d'après 4., et un calcul immédiat montre qu'elle est positive et bornée sur \mathbb{R}^2 par $||f||_{\infty}$. Comme h est continue sur \mathbb{R}_+ , et en particulier bornée sur $[0,||f||_{\infty}]$, on en déduit que $h \circ \Phi_f$ est continue et bornée sur \mathbb{R}^2 .

En dominant l'intégrande par $x \mapsto ||f||_{\infty}\mu(x)$, on constate que J et continue, et un calcul rapide montre $J(0) = \int h(f(x))\mu(x) \, \mathrm{d}x$ et, en posant $a = \int f(y)\mu(y) \, \mathrm{d}y$: $J(\pi/2) = \int h(a)\mu(x) \, \mathrm{d}x = h(a)$.

On peut remarquer au passage : $J(0) - J(\pi/2) = \operatorname{Ent}_{\mu}(\sqrt{f})$.

7.

(7a.) Par croissance de l'intégrale, $\delta \leq \Phi_f(t,x) \leq ||f||_{\infty}$. Or h est C^1 sur $[\delta, +\infty[$, donc pour tout $x \in \mathbb{R}$, $t \mapsto h(\Phi_f(t,x))\mu(x)$ est de classe C^1 sur \mathbb{R} , de dérivée : $t \mapsto \partial_t \Phi_f(t,x)h'(\Phi_f(t,x))\mu(x)$.

La fonction h' est continue, donc bornée, mettons par M, sur $[\delta, ||f||_{\infty}]$ et on a trouvé au 5d. deux constantes positives A et B telles que $|\partial_t \Phi_f(t,x)h'(\Phi_f(t,x))\mu(x)| \leq (A|x|+B)M\mu(x)$.

D'après le théorème de dérivation, J est donc de classe C^1 sur \mathbb{R} , et avec 5c. :

$$(\cos t)J'(t) = \int (\cos t)\partial_t \Phi_f(t,x)h'(\Phi_f(t,x))\mu(x) dx = \int (\sin t)L\Phi_f(t,x)[1 + \ln \Phi_f(t,x)]\mu(x) dx.$$

Comme t est fixé, on applique 3a. à $x \mapsto \Phi(t,x)$, donc $(\cos t)J'(t) = \int \frac{(\sin t)}{2} \partial_x [\mu(x)\partial_x \Phi(t,x)] \cdot [1 + \ln \Phi_f(t,x)] dx$.

On intègre par parties: $(\cos t)J'(t) = \frac{\sin(t)}{2} \left(\left[\mu(x)\partial_x \Phi(t,x)(1+\ln\Phi_f(t,x)) \right] - \int \frac{\partial_x \Phi_f(t,x)}{\Phi_f(t,x)} \mu(x)\partial_x \Phi(t,x) \, \mathrm{d}x \right) = \sin t \int \partial_x \Phi_f(t,x)^2 \, \mathrm{d}x$

 $-\frac{\sin t}{2} \int \frac{\partial_x \Phi_f(t,x)^2}{\Phi_f(t,x)} \mu(x) \, \mathrm{d}x.$

L'intégration par parties est bien licite car pour tout $(t,x): |\mu(x)\partial_x\Phi(t,x)(1+\ln\Phi_f(t,x))| \leq ||f'||_{\infty}M\mu(x)$, ce qui entraı̂ne la convergence et la nullité du crochet.

(7b.) Notons que f étant minorée par δ et f' bornée, la fonction g est bornée et $g\mu$ est intégrable. On fixe (t,x). Les fonctions $y\mapsto \sqrt{f(x\cos t+y\sin t)\mu(y)}$ et $y\mapsto \sqrt{g(x\cos t+y\sin t)\mu(y)}$ sont L^2 donc leur produit $y\mapsto |f'(x\cos t+y\sin t)\mu(y)|$ est intégrable, et d'après l'inégalité de Cauchy-Schwarz :

$$\Phi_{f'}(t,x)^{2} = \left(\int f'(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y\right)^{2} \le \left(\int |f'(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y\right)^{2}$$

$$= \left(\int \sqrt{f(x\cos t + y\sin t)\mu(y)}\sqrt{g(x\cos t + y\sin t)\mu(y)}\,\mathrm{d}y\right)^{2}$$

$$\le \int f(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y\int g(x\cos t + y\sin t)\mu(y)\,\mathrm{d}y = \Phi_{f}(t,x)\cdot\Phi_{g}(t,x).$$

(7c.) Pour tout $t \in]0, \pi/2[$, en appliquant 5b. : $J'(t) = -\frac{\tan t}{2} \int \frac{\partial_x \Phi_f(t, x)^2}{\Phi_f(t, x)} \mu(x) \, dx = -\frac{\sin(2t)}{4} \int \frac{\Phi_{f'}(t, x)^2}{\Phi_f(t, x)} \mu(x) \, dx$.

On constate $J'(t) \leq 0$ et d'après 7b. et 5d. : $|J'(t)| \leq \frac{\sin(2t)}{4} \int \Phi_g(t, x) \mu(x) \, dx = \frac{\sin(2t)}{4} \int g(x) \mu(x) \, dx$.

Comme J est de classe C^1 sur \mathbb{R} , $J(0)-J(\pi/2)=\int_0^{\pi/2}-J'(t)\,\mathrm{d}t \leq \int g(x)\mu(x)\,\mathrm{d}x\int \frac{\sin(2t)}{4}\,\mathrm{d}t = \frac{1}{4}\int g(x)\mu(x)\,\mathrm{d}x$, ce qui est l'inégalité attendue d'après les calculs de 6.

8. Comme f est bornée et h continue, $h(f^2)$ est bornée donc $h(f^2)\mu$ est intégrable, c'est-à-dire que f admet une entropie par rapport à μ .

Soit $\delta > 0$. On pose $f_{\delta} = \delta + f^2$, donc $f'_{\delta} = 2ff'$. En particulier, $f_{\delta} \in C_b^2$ et $f_{\delta} \geq \delta$ et on peut appliquer les résultats de 7. à f_{δ} .

résultats de 7. à f_{δ} . On pose $g_{\delta} = \frac{f_{\delta}'^2}{f_{\delta}} = \frac{4f^2f'^2}{\delta + f^2} \le 4f'^2$. On remarque : $\frac{1}{4} \int g_{\delta}(x)\mu(x) \, \mathrm{d}x \le \int f'(x)^2\mu(x) \, \mathrm{d}x$.

D'après 7c. : $\int h(\delta + f(x)^2)\mu(x) dx - h\left(\int (\delta + f(x)^2)\mu(x) dx\right) \le \int f'(x)^2\mu(x) dx$.

Montrons que les termes du membre de gauche sont des fonctions continues de δ :

Pour le premier, si on se restreint à $\delta \leq 1$, on peut majorer grossièrement $|h(\delta + f(x)^2)|$ par le maximum M de |h| sur $[0, 1 + ||f||_{\infty}^2]$, ce qui permet la domination : $\forall x \in \mathbb{R}, \ \forall \delta \in [0, 1], \ |h(\delta + f(x)^2)\mu(x)| \leq M\mu(x)$, donc $\delta \mapsto \int h(\delta + f(x)^2)\mu(x) \, \mathrm{d}x$ est continue sur [0, 1].

Pour le second, $\int (\delta + f(x)^2)\mu(x) dx = \delta + \int f(x)^2\mu(x) dx$, et comme h est continue sur \mathbb{R}_+ , on peut donc faire tendre δ vers 0, ce qui donne l'inégalité demandée.

9. Posons f(x) = x. C'est une fonction C^1 à dérivée constante, donc bornée, donc elle admet une entropie d'après l'hypothèse de cette partie.

D'après 2a. et 1., f^2m et fm sont intégrables, donc $x \mapsto (1+|x|+x^2)m(x)$ est intégrable.

10.

(10a.) Supposons (2) prouvée pour des fonctions $g \in C_b^1$ telles que $\int g(x)m(x) dx = 0$ et $\int g^2(x)m(x) dx = 1$. On pose $E = \int f(x)m(x) dx$ et $\sigma \ge 0$ tel que $\sigma^2 = \int (f(x) - E)^2 m(x) dx$. En développant, on vérifie que

 $\sigma^2 = \operatorname{Var}_m(f)$.

Si $Var_m(f) = 0$, l'inégalité (2) est évidente, on suppose donc $\sigma > 0$. On pose alors $g = \frac{f - E}{\sigma}$. Il est clair que $g \in C_b^1$, $\int g(x)m(x)\,\mathrm{d}x = 0$ et $\int g(x)^2m(x)\,\mathrm{d}x = 1$, donc on peut appliquer (2) : $1 = \mathrm{Var}_m(g) \leq 1$ $\frac{C}{2} \int \frac{|f'(x)|^2}{\sigma^2} m(x) \, \mathrm{d}x, \text{ et donc } \mathrm{Var}_m(f) = \sigma^2 \le \frac{C}{2} \int |f'(x)|^2 m(x) \, \mathrm{d}x.$

(10b.) On suppose donc $\int fm = 0$ et $\int f^2m = 1$. On fixe $\varepsilon > 0$ et $f_{\varepsilon} = 1 + \varepsilon f$. On va ensuite faire tendre ε vers 0. D'une part, on développe : $\int (1+\varepsilon f(x))^2 m(x) dx = 1+2\varepsilon \int f(x)m(x) dx + \varepsilon^2 \int f(x)^2 m(x) dx = 1+\varepsilon^2$, donc $h\left(\int (1+\varepsilon f(x))^2 m(x) dx\right) = h(1+\varepsilon^2) = (1+\varepsilon^2) \ln(1+\varepsilon^2) \sim \varepsilon^2.$

D'autre part, on considère le développement limité $h(1+y)^2=2(1+y)^2\ln(1+y)=2y+3y^2+y^3\theta(y)$, où θ est une fonction bornée sur un intervalle $[-\alpha, +\alpha]$, mettons par M>0.

Pour ε assez petit, $\varepsilon ||f||_{\infty} \le \alpha$. et $|\int \varepsilon^3 f(x)^3 \theta(\varepsilon f(x)) m(x) dx| \le \varepsilon^3 M \int |f(x)|^3 |m(x)| dx$.

On en déduit :

$$\operatorname{Ent}_{m}(f_{\varepsilon}) = \int h(1 + \varepsilon f(x))\mu(x) \, \mathrm{d}x - h\left(\int (1 + \varepsilon f(x))^{2} m(x) \, \mathrm{d}x\right)$$
$$= \int 2\varepsilon f(x)\mu(x) \, \mathrm{d}x + \int 3\varepsilon^{2} f(x)^{2} \mu(x) \, \mathrm{d}x + O(\varepsilon^{3}) - \varepsilon^{2} + o(\varepsilon^{2}) \sim 2\varepsilon^{2}$$

Or $f'_{\varepsilon} = \varepsilon f'$, donc d'après l'inégalité (1) : $\frac{\operatorname{Ent}_m(f_{\varepsilon})}{\varepsilon^2} \le C \int f'(x)^2 m(x) dx$.

On fait tendre ε vers 0, d'où $1 \leq \frac{C}{2} \int f'(x)^2 m(x) dx$, ce qui est l'inégalité attendue.

11.

(11a.) On peut remarquer $H(\lambda) > 0$. Par continuité et positivité de l'intégrande, $H(\lambda) = 0$ entraîne m identiquement nulle, ce qui est absurde pour une mesure.

Pour tout $\lambda \in \mathbb{R}$, $\lambda H'(\lambda) = \int \lambda f(x) e^{\lambda f(x)} m(x) dx = \int h(e^{\lambda f(x)}) m(x) dx$ et

 $H(\lambda)\ln(H(\lambda)) = h(H(\lambda)).$

On pose $g(x) = e^{\lambda f(x)/2}$ et on reconnaît : $\lambda H'(\lambda) - H(\lambda) \ln(H(\lambda)) = \operatorname{Ent}_m(g)$. Or $g \in C_b^1$ car $f \in C_b^1$, donc par hypothèse de cette partie, g admet bien une entropie et

 $\operatorname{Ent}_m(g) \le C \int \left(\lambda/2f'(x) e^{\lambda f(x)/2} \right)^2 m(x) \, \mathrm{d}x \le C \lambda^2/4 \int f'(x)^2 e^{\lambda f(x)} m(x) \, \mathrm{d}x \le \frac{C \lambda^2}{4} H(\lambda),$

en tenant compte de $|f'(x)| \leq 1$.

(11b.) L'inégalité est évidente pour $\lambda = 0$, on va la prouver pour $\lambda > 0$.

Pour tout $\lambda > 0$, on pose $\varphi(\lambda) = \frac{\ln H(\lambda)}{\lambda}$. Cette fonction est C^1 sur \mathbb{R}_+^* et $\varphi'(\lambda) = \frac{\lambda H'(\lambda) - H(\lambda) \ln H(\lambda)}{\lambda^2 H(\lambda)} \le 1$

On a H(0)=1 et $H'(0)=\int f(x)m(x)\,\mathrm{d}x$. Comme H est C^1 sur \mathbb{R} , on a au voisinage de $0:H(\lambda)=0$ $1 + H'(0)\lambda + o(\lambda)$, donc $\varphi(\lambda)$ tend vers H'(0) quand $\lambda \to 0$. On prolonge ainsi φ par continuité en 0.

Soit $\lambda > 0$. D'après le théorème des accroissements finis, il existe $c \in]0, \lambda[$ tel que $\varphi(\lambda) - \varphi(0) = \varphi'(c) \leq \frac{C}{4}\lambda$, donc $\ln H(\lambda) \le \lambda H'(0) + C\lambda^2/4$, c'est-à-dire :

$$H(\lambda) \le \exp\left(\lambda \int f(x)m(x) dx + C\lambda^2/4\right).$$

12. On ne peut pas appliquer directement 11. car $f: x \mapsto x$ n'est pas bornée. On pose donc, pour $n \in \mathbb{N}^*$, $f_n: x \mapsto n \operatorname{Arctan}(x/n)$. Pour tout n, f_n est bornée (par $n\pi/2$), de classe C^1 , et $\forall x \in \mathbb{R}$, $f'_n(x) = \frac{1}{1 + x^2/n^2} \in [0, 1]$, donc f_n vérifie les hypothèses de 11. On peut donc écrire, pour tout $\lambda \geq 0$:

$$\int e^{\lambda f_n(x)} m(x) dx \le \exp\left(\lambda \int f_n(x) m(x) dx + C\lambda^2/4\right).$$

En utilisant l'inégalité $|Arctan(x)| \le |x|$ (car Arctan est concave sur \mathbb{R}_+ et impaire), on remarque pour tout (n,x): $|f_n(x)m(x)| \leq |x|m(x)$. Cette fonction est intégrable (domination), et comme pour tout $x, f_n(x) \to x$ quand n tend vers $+\infty$ (convergence simple), le théorème de convergence dominée assure (via la continuité de l'exponentielle) que le second membre tend vers $S = \exp\left(\lambda \int x m(x) dx + C\lambda^2/4\right)$.

Soit $\varepsilon > 0$. Pour n assez grand, on a donc :

$$\int e^{\lambda f_n(x)} m(x) \, \mathrm{d}x \le S + \varepsilon.$$

Si on fixe deux réels a < b, la positivité de $x \mapsto e^{\lambda f_n(x)} m(x)$ permet d'écrire : $\int_0^b e^{\lambda f_n(x)} m(x) dx \le S + \varepsilon$.

Pour $x \in [a, b]$, $e^{\lambda f_n(x)} m(x)$ tend vers $e^{\lambda x} m(x)$ (convergence simple) et $0 \le e^{\lambda f_n(x)} m(x) \le e^{\lambda x} m(x)$ (domination), cette dernière fonction étant continue donc intégrable sur [a,b]. Par le théorème de convergence dominée, il vient :

$$\int_{a}^{b} e^{\lambda x} m(x) \, \mathrm{d}x \le S + \varepsilon.$$

 f_a Comme ceci est vrai de tout segment [a,b], la fonction $x \mapsto e^{\lambda x} m(x)$, qui est positive, est intégrable sur \mathbb{R} , et $\int e^{\lambda x} m(x) dx \le S + \varepsilon$. Ceci étant vrai pour tout $\varepsilon > 0$, on en déduit $\int e^{\lambda x} m(x) dx \le S$, ce qui est l'inégalité

13.

(13a.) Soit
$$\lambda \geq 0$$
. Pour tout $x \in [a, +\infty[$, $1 \leq e^{\lambda(x-a)} = e^{-\lambda a}e^{\lambda x}$ et d'après 12., $x \mapsto e^{\lambda x}$ est L^1 et :
$$\int_a^{+\infty} m(x) \, \mathrm{d}x \leq \int_a^{+\infty} e^{\lambda(x-a)} m(x) \, \mathrm{d}x = e^{-\lambda a} \int e^{\lambda x} m(x) \, \mathrm{d}x \leq \exp(\lambda(M-a) + C\lambda^2/4).$$

En dérivant l'argument de l'exponentielle, on constate qu'il admet un minimum pour $\lambda = 2(a-M)/C$. Pour cette valeur de λ , on obtient l'inégalité demandée.

(13b.) Notons que $x \mapsto e^{\alpha x^2} m(x)$ est continue sur \mathbb{R} , il suffit donc de justifier l'intégrabilité au voisinage de $\pm \infty$.

On remarque que, comme m est continue sur \mathbb{R} , l'application $x \mapsto -\int_{-\infty}^{+\infty} m(t) dt$ est une primitive de m.

On fixe $\alpha < 1/C$ comme dans l'énoncé et $a \ge M$ comme dans la question précédente. On intègre formellement

$$\int_{a}^{+\infty} e^{\alpha x^2} m(x) dx = \left[-e^{\alpha x^2} \int_{x}^{+\infty} m(t) dt \right]_{a}^{+\infty} + \int_{a}^{+\infty} 2\alpha x e^{\alpha x^2} \left(\int_{x}^{+\infty} m(t) dt \right) dx.$$

D'après 12., pour $x \ge a \le M$: $0 \le e^{\alpha x^2} \int_{-\infty}^{+\infty} m(t) dt \le \exp[(\alpha - 1/C)x^2 + 2Mx/C - M^2/C]$, qui tend vers 0 quand $x \to +\infty$ (car $\alpha < 1/C$), ce qui montre que le crochet est bien convergent.

Fixons $\beta \in]\alpha - 1/C, 0[$. On vérifie (croissances comparées) qu'au voisinage de $+\infty : x \exp[(\alpha - 1/C)x^2 +$ $2Mx/C - M^2/C = o(e^{\beta x^2})$. Ceci assure la convergence de la seconde intégrale.

On en déduit que $\int_{-\infty}^{+\infty} e^{\alpha x^2} m(x) dx$ est convergente, donc la fonction $x \mapsto e^{\alpha x^2} m(x)$ est intégrable au voisinage

Étudions le cas de $-\infty$. Par un changement de variable évident, $\int_{-\infty}^{-a} e^{\alpha x^2} m(x) dx$ converge si et seulement si

$$\int_{a}^{+\infty} e^{\alpha x^{2}} m(-x) dx \text{ converge.}$$

Or $m_1: x \mapsto m(-x)$ est une mesure (clair). Vérifions qu'elle satisfait l'hypothèse du III.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction C^1 de dérivée bornée. On note $f_1: x \mapsto f(-x)$, qui est également C^1 , de dérivée bornée. D'après l'hypothèse de III, f_1 admet une entropie par rapport à m, donc $x \mapsto h(f(-x)^2)m(x)$ est L^1 . On en déduit que $x \mapsto h(f(x)^2)m(-x)$ est L^1 , donc f admet une entropie par rapport à m_1 .

De plus, $\operatorname{Ent}_m(f_1) \leq C \int f_1'(x)^2 m(x) \, dx$. Le même changement de variable assure que $\operatorname{Ent}_{m_1}(f) \leq C \int f'(x)^2 m_1(x) \, dx$

On en déduit que les résultats prouvés ci-dessus s'appliquent à la mesure m_1 . En particulier, pour $a \ge \int xm(-x) dx = -M$, $\int_{a}^{+\infty} e^{\alpha x^2} m(-x) dx$ converge, donc $\int_{a}^{-a} e^{\alpha x^2} m(x) dx$ converge. Finalement, $x \mapsto e^{\alpha x^2} m(x)$ est intégrable au voisinage de $-\infty$, et donc sur \mathbb{R} .

14.

(14a.) Analysons la situation : $K = \int p(x) dx$ est une constante strictement positive car p est continue et strictement positive. Si on note P une primitive de p, on peut écrire l'égalité sous la forme P(u)' = K, soit $P(u(t)) = Kt + K_0$. Comme p > 0, ses primitives sont strictement croissantes, donc injectives, on pourra écrire $u(t) = P^{-1}(Kt + K_0)$. Nécessairement, u est strictement croissante (par composition), on veut donc que u tende vers $-\infty$ en 0 et $+\infty$ en 1, c'est-à-dire que P tende vers 0 en $-\infty$ (donc $K_0 = 0$) et K en $+\infty$.

Ces remarques informelles amènent à poser, pour $x \in \mathbb{R}$, $P(x) = \int_{-\infty}^{x} p(t) dt$. L'application P est bien définie car p est intégrable, c'est une primitive de p, donc elle est strictement croissante sur \mathbb{R} . Ses limites en $-\infty$ et $+\infty$ sont respectivement 0 et K, donc elle induit une bijection de \mathbb{R} sur]0, K[. Sa réciproque P^{-1} est de classe C^{1} car P' = p ne s'annule pas.

On pose donc, pour $t \in]0,1[$, $u(t)=P^{-1}(Kt)$. Par composition, u est C^1 , bijective de]0,1[sur \mathbb{R} , et un calcul direct donne $u'(t)=\frac{K}{p(P^{-1}(Kt))}=\frac{K}{p(u(t))}$.

(14b.) D'après 14a., pour tout $t \in]0,1[:\left(\int p(x)\,\mathrm{d}x\right)\left(\cdot\int q(x)\,\mathrm{d}x\right) = p(u(t))q(v(t))u'(t)v'(t).$

Notons que les quatre facteurs sont positifs. On considère les racines carrées des deux membres.

D'après l'hypothèse (4) : $\sqrt{p(u(t))}\sqrt{q(v(t))} \le r\left(\frac{u(t)+v(t)}{2}\right)$.

Rappelons que pour tout $(a,b) \in \mathbb{R}^2$: $|ab| \leq \frac{a^2+b^2}{2}$, (vient de $(|a|-|b|)^2 \geq 0$). On en déduit : $\sqrt{u'(t)v'(t)} \leq \frac{u'(t)+v'(t)}{2}$.

Finalement, $\sqrt{\left(\int p(x) dx\right) \left(\cdot \int q(x) dx\right)} \le r\left(\frac{u(t)+v(t)}{2}\right) \cdot \frac{u'(t)+v'(t)}{2}$.

On intègre les deux membres sur]0,1[, en tant que fonctions de t. Le membre de gauche est constant, donc inchangé par cette opération.

Considérons $w:t\in]0,1[\mapsto \frac{u(t)+v(t)}{2}$. C'est une fonction C^1 , strictement croissante (somme de fonctions strictement croissante). Comme u et v tendent toutes les deux vers $-\infty$ en 0 et $+\infty$ en 1, il en va de même pour w, qui définit une bijection croissante de [0,1[sur \mathbb{R} .

Par changement de variable, on a donc : $\int_0^1 r\left(\frac{u(t)+v(t)}{2}\right) \frac{u'(t)+v'(t)}{2} dt = \int r(x) dx$, et on obtient finalement l'inégalité (5).

15.

(15a.) Si $y \notin A$, le premier membre est nul et l'inégalité est évidente. Si $y \in A$, alors $d(x,A) \le |x-y|$, donc $\frac{1}{2}d(x,A)^2 - x^2 - y^2 \le (x-y)^2/2 - x^2 - y^2 = -(x+y)^2/2$ et on obtient l'inégalité demandée par croissance de exp.

(15b.) L'inégalité de 15a. ressemble fort à (4). Il suffit en effet de poser $p(x) = \exp(d(x,A)^2/2 - x^2)$, $q(x) = 1_A(x)\exp(-x^2)$ et $r(x) = \exp(-x^2)$ pour obtenir trois fonctions positives, continues par morceaux, intégrables sur \mathbb{R} et vérifiant (4). On applique donc 14b. :

$$\int \exp(d(x,A)^2/2 - x^2) \,\mathrm{d}x \times \int 1_A(x) \exp(-x^2) \,\mathrm{d}x \le \left(\int \exp(-x^2) \,\mathrm{d}x\right)^2.$$

En divisant les deux membres par π , puis en intégrant le membre de droite, il vient : $\int \exp(d(x,A)^2/2)\mu(x) dx \times \int 1_A(x)\mu(x) dx = \mu(A) \int \exp(d(x,A)^2/2)\mu(x) dx \le 1$, ce qui est l'inégalité attendue.

16.

(16a.) On note $A = \bigcup_{k=1}^{N} I^k$ où I^k est un intervalle et N un entier naturel non nul. Par double inclusion, on montre que $A_t = \bigcup_{k=1}^{N} I_t^k$:

S'il existe k tel que $x \in I_t^k$, alors $d(x, A) \le d(x, I_k) \le t$, donc $x \in A_t$.

Réciproquement, supposons $x \in A_t$. On se donne une suite (a_i) d'éléments de A telle que $d(x, a_i) \to d(x, A)$. Comme A est une réunion finie d'intervalles, il existe au moins un intervalle I^k qui contient une infinité de termes de cette suite. On en déduit $d(x, I^k) \le d(x, A) \le t$, donc $x \in I_t^k$.

On vérifie maintenant que si I est un intervalle, alors I_t est encore un intervalle.

Si I est vide, alors $I_t = \mathbb{R}$. On suppose donc I non vide.

Fixons x < w < y avec $x, y \in I_t$.

Supposons qu'il existe $a \in I$ tel que $a \le w$. On a alors deux cas : s'il existe $b \in I$ tel que w < b, alors $w \in I$ et $d(w,A) = 0 \le t$; sinon, I est situé à gauche de w, donc $d(w,I) \le d(y,I) \le t$. On procède symétriquement s'il existe $a \in I$ tel que $a \ge w$, en considérant cette fois la position de x. Finalement, $w \in I_t$, donc I_t est un intervalle, ce qui montre que $A_t \in I$ nt pour tout $t \ge 0$.

(16b.) Si $x \notin A_t$, $\exp(d(x,A)^2/2) \ge \exp(t^2/2)$, donc $(1-1_A(x)) \exp(d(x,A)^2/2) \ge (1-1_A(x)) \exp(t^2/2)$, puisque les deux membres sont nuls lorsque $x \in A$.

En multipliant par $\mu(x)$ et en intégrant, il vient : $\int (1-1_A(x)) \exp(d(x,A)^2/2) \mu(x) dx \ge \exp(t^2/2) (1-\mu(A_t))$. D'autre part, on majore $1-1_A \le 1$ et donc d'après 15b. :

$$\int (1-1_A(x)) \exp(d(x,A)^2/2) \mu(x) \, \mathrm{d}x \leq \int \exp(d(x,A)^2/2) \mu(x) \, \mathrm{d}x \leq \frac{1}{\mu(A)}, \text{ d'où l'inégalité attendue}.$$

EDB