Corrigé de la composition de mathématiques - C - (ULCR)

Session de 2015

Partie I

1)a. L'application $x \mapsto e^{-x^2}$ est continue sur $[0, +\infty[$, donc l'application A est de classe C^1 sur $[0, +\infty[$, avec:

$$\forall t \ge 0, \ A'(t) = 2e^{-x^2} \int_0^t e^{-x^2} dx.$$

Pour tout a > 0, l'application $\varphi : [0, a] \times [0, 1] \longrightarrow \mathbb{R}$ définie par:

$$\forall (t,x) \in [0,a] \times [0,1], \ \varphi(t,x) = -\frac{e^{-t^2(1+x^2)}}{1+x^2}$$

vérifie les hypothèses du théorème de Leibniz:

- pour tout $t \in [0, a], x \mapsto \varphi(t, x)$ est continue par morceaux (et sommable) sur [0, 1];
- pour tout $x \in [0,1], t \longmapsto \varphi(t,x)$ est de classe C^1 sur [0,a];
- pour tout $t \in [0, a], x \mapsto \frac{\partial \varphi}{\partial t}(t, x)$ est continue par morceaux;
- pour tout $(t,x) \in [0,a] \times [0,1]$, $\left| \frac{\partial \varphi}{\partial t}(t,x) \right| = 2te^{-t^2(1+x^2)} \le 2a$ et l'application $t \mapsto 2a$ est continue par morceaux et sommable sur [0,1].

On en déduit que B est de classe C^1 sur chaque [0, a], donc sur $[0, +\infty[$, avec:

$$\forall t \ge 0, B'(t) = 2t \int_0^1 e^{-t^2(1+x^2)} dx = 2e^{-t^2} \int_0^1 e^{-(tx)^2} d(tx)$$

Le changement de variable y = tx donne donc A'(t) = B'(t) pour tout t > 0, égalité qui reste valable quand t = 0.

1)b. Il existe ainsi une constante K telle que A(t) = B(t) + K pour tout $t \ge 0$: nous obtenons en particulier $K = A(0) - B(0) = \frac{\pi}{4}$. D'autre part, B(t) tend vers 0 quand t tend vers $+\infty$:

$$|B(t)| \le e^{-t^2} \int_0^1 \frac{1}{1+x^2} dx \xrightarrow[t \to +\infty]{} 0.$$

On en déduit que $A(t) \xrightarrow[t \to +\infty]{} \frac{\pi}{4}$, ce qui donne $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$, puis:

$$\int_{\mathbb{R}} G(x) \, \mathrm{d}x = \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-(x/\sqrt{2})^2} \, \mathrm{d}(x/\sqrt{2}) = 1.$$

2) On applique la méthode de la variation de la constante: la fonction $x \mapsto e^{x^2/2}$ est une base de l'espace des solutions de l'équation homogène y' - xy = 0 et on pose $\varphi : x \mapsto A(x)e^{x^2/2}$, la nouvelle fonction inconnue A étant une fonction dérivable. φ est solution de l'équation étudiée si et seulement si

$$\forall x \in \mathbb{R}, \ A'(x) = e^{-x^2/2}g(x).$$

Comme g est bornée sur \mathbb{R} , la fonction $x \longmapsto e^{-x^2/2}g(x)$ est sommable au voisinage de $-\infty$ et les solutions de l'équation sont les applications de la forme $x \longmapsto Ae^{x^2/2} + e^{x^2/2} \int_{-\infty}^x e^{-y^2/2}g(y)\,\mathrm{d}y$ où A est une constante réelle quelconque.

3) Comme la fonction $f - \langle f \rangle$ est continue sur \mathbb{R} , la fonction proposée est solution de l'équation différentielle $y' - xy = f - \langle f \rangle$. On en déduit que φ est dérivable et que $\varphi' : x \longmapsto x\varphi(x) + f(x) - \langle f \rangle$ est continue.

On a d'autre part, pour tout $x \in \mathbb{R}$ (en remarquant que les intégrales écrites sont convergentes, puisque f est bornée):

$$f(x) = e^{x^2/2} \left(\int_{\mathbb{R}} e^{-y^2/2} (f(y) - \langle f \rangle) \, dy - \int_{x}^{+\infty} e^{-y^2/2} (f(y) - \langle f \rangle) \, dy \right)$$
$$= -e^{x^2/2} \int_{x}^{+\infty} e^{-y^2/2} (f(y) - \langle f \rangle) \, dy$$

puisque
$$\int_{\mathbb{R}} e^{-y^2/2} (f(y) - \langle f \rangle) dy = \sqrt{2\pi} \left(\int_{\mathbb{R}} G(y) f(y) dy - \langle f \rangle \right) = 0.$$

4) Nous avons $(x-y)^2 \ge 0$, soit $-\frac{y^2}{2} \le -\frac{x^2}{2} - x(y-x)$, ce qui donne l'inégalité demandée par croissance de la fonction exponentielle.

Pour $x \in]-\infty,-1]$, nous avons en utilisant l'inégalité précédente:

$$\begin{aligned} |\varphi(x)| &\leq e^{x^2/2} \int_{-\infty}^x e^{-y^2/2} \underbrace{|f(y) - \langle f \rangle|}_{\leq 2 \|f\|_{\infty}} \, \mathrm{d}y \\ &\leq 2 \|f\|_{\infty} \int_{-\infty}^x e^{-x(y-x)} \, \mathrm{d}y \\ &= 2 \|f\|_{\infty} \left[\frac{e^{-x(y-x)}}{-x} \right]_{-\infty}^x \\ &= \frac{2 \|f\|_{\infty}}{|x|} \\ &\leq \frac{4 \|f\|_{\infty}}{1 + |x|} \end{aligned}$$

 $\arctan \frac{2}{|x|} \le \frac{4}{1+|x|} \text{ quand } |x| \ge 1.$

Pour $x \in [-1, 0]$, nous avons cette fois:

$$\begin{aligned} |\varphi(x)| & \leq 2\|f\|_{\infty} e^{x^2/2} \int_{-\infty}^{x} e^{-y^2/2} \, \mathrm{d}y \\ & \leq 2\|f\|_{\infty} e^{1/2} \int_{-\infty}^{0} e^{-y^2/2} \, \mathrm{d}y \\ & = 2\|f\|_{\infty} e^{1/2} \frac{\sqrt{2\pi}}{2} \\ & \leq \frac{2\|f\|_{\infty} \sqrt{2\pi}e}{1+|x|} \end{aligned}$$

 $car 1 + |x| \le 2.$

En utilisant la formule $\varphi(x) = -e^{x^2/2} \int_x^{+\infty} e^{-y^2/2} (f(y) - \langle f \rangle) \, dy$, nous obtenons des résultats similaires pour $x \ge 0$, ce qui donne:

$$\forall x \in \mathbb{R}, \qquad |\varphi(x)| \le \frac{C_0' ||f||_{\infty}}{1 + |x|}$$

avec $C_0' = \max(4, 2\sqrt{2\pi e}) = 2\sqrt{2\pi e}$. La relation $C_0 \le 2\sqrt{2\pi e}$ demandée par l'énoncé laisse entendre que C_0 désigne, comme aux questions suivantes, la plus petite valeur (indépendante de x et de f) vérifiant l'inégalité demandée.

On en déduit que φ' est bornée:

$$\forall x \in \mathbb{R}, \qquad |\varphi'(x)| = |x\varphi(x) + f(x)| - \langle f \rangle| \le \frac{|x|}{1 + |x|} C_0 ||f||_{\infty} + 2||f||_{\infty} \le (C_0 + 2)||f||_{\infty}.$$

5) En posant y = x + s, nous obtenons pour tout $x \in \mathbb{R}$:

$$\varphi(x) = -e^{x^{2}/2} \int_{x}^{+\infty} e^{-y^{2}/2} (f(y) - \langle f \rangle) \, \mathrm{d}y$$

$$= -e^{x^{2}/2} \int_{0}^{+\infty} e^{-(x+s)^{2}/2} (f(x+s) - \langle f \rangle) \, \mathrm{d}s$$

$$= -\int_{0}^{+\infty} e^{-s^{2}/2} e^{-sx} (f(x+s) - \langle f \rangle) \, \mathrm{d}s.$$

On applique une nouvelle fois facilement le théorème de Leibniz, pour obtenir:

$$\forall x \in \mathbb{R}, \qquad \varphi'(x) = -\int_0^{+\infty} e^{-s^2/2} e^{-sx} f'(x+s) \, \mathrm{d}s + \int_0^{+\infty} s e^{-s^2/2} e^{-sx} \left(f(x+s) - \langle f \rangle \right) \, \mathrm{d}s.$$

Séparons une nouvelle fois les cas:

Pour $x \ge 1$, nous avons:

$$|\varphi'(x)| \le ||f'||_{\infty} \int_{0}^{+\infty} e^{-sx} ds + 2||f||_{\infty} \int_{0}^{+\infty} s e^{-s^{2}/2} ds = \frac{||f||_{\infty}}{x} + \frac{2||f||_{\infty}}{x^{2}}$$

Comme $\frac{1}{x} \le \frac{2}{1+x}$ et $\frac{1}{x^2} \le \frac{2}{1+x}$ sur $[1, +\infty[$, nous en déduisons que

$$|\varphi'(x)| \le \frac{2\|f'\|_{\infty} + 4\|f\|_{\infty}}{1+x} \le \frac{4(\|f\|_{\infty} + \|f'\|_{\infty})}{1+x}.$$

Pour $x \in [0, 1]$, nous avons:

$$|\varphi'(x)| \le ||f'||_{\infty} \int_{0}^{+\infty} e^{-s^{2}/2} \, \mathrm{d}s + 2||f||_{\infty} \int_{0}^{+\infty} s e^{-s^{2}/2} \, \mathrm{d}s = ||f'||_{\infty} \frac{\sqrt{2\pi}}{2} + 2||f||_{\infty} \le \frac{4 \left(||f||_{\infty} + ||f'||_{\infty} \right)}{1 + x}$$

 $car 1 + x \le 2.$

On travaille de la même façon avec $x \leq 0$, en partant de la formule $\varphi(x) = \int_{-\infty}^{0} e^{-s^2/2} e^{-sx} \left(f(s+x) - \langle f \rangle \right) ds$, ce qui donne:

$$\forall x \in \mathbb{R}, \ (1+|x|)\varphi'(x)| \le 4(\|f\|_{\infty} + \|f'\|_{\infty})$$

Ceci prouve l'existence de C_1 , avec $C_1 \leq 4 = C'_1$.

Remarque: cette méthode peut être reprise pour obtenir plus naturellement une majoration de $(1+|x|)\varphi(x)$ qui est meilleure que celle de la question 4. On a en effet:

$$\forall x \in [0,1], \qquad |\varphi(x)| \le 2\|f\|_{\infty} \int_{0}^{+\infty} e^{-s^{2}/2} \, \mathrm{d}x = \|f\|_{\infty} \sqrt{2\pi} \le \frac{2\sqrt{2\pi} \|f\|_{\infty}}{1+x}$$

$$\forall x \ge 1, \qquad |\varphi(x)| \le 2\|f\|_{\infty} \int_{0}^{+\infty} e^{-sx} \, \mathrm{d}x = \frac{2\|f\|_{\infty}}{x} \le \frac{4\|f\|_{\infty}}{1+x}.$$

6) Comme $\varphi': x \longmapsto x\varphi(x) + f(x) - \langle f \rangle$, φ est de classe C^2 et φ'' est bornée:

$$\forall x \in \mathbb{R}, \ |\varphi''(x)| \le \frac{C_0' \|f\|_{\infty}}{1 + |x|} + \frac{|x|C_1' (\|f\|_{\infty} + \|f'\|_{\infty})}{1 + |x|} + \|f'\|_{\infty} + \|f'\|_{\infty}$$

avec $C_2' = \max(C_0' + C_1', 1 + C_1') = 2\sqrt{2\pi e} + 4$, qui est donc un majorant de la constante optimale C_2 .

Partie II

1) Comme φ et φ' sont continues et bornées, les fonctions $G\varphi$ et $G\varphi'$ sont sommables sur \mathbb{R} . L'intégration par parties:

$$\int_{\mathbb{R}} G(x)\varphi'(x) dx = \left[G(x)\varphi(x) \right]_{-\infty}^{+\infty} - \int_{\mathbb{R}} G'(x)\varphi(x) dx = \int_{\mathbb{R}} xG(x)\varphi(x) dx$$

est donc valide et donne l'égalité demandée.

2) On applique les résultat de la partie I.4 à f: la fonction $\varphi: x \longmapsto e^{x^2/2} \int_{-\infty}^x e^{-y^2/2} (f(y) - \langle f \rangle) dy$ est de classe C^1 avec φ et φ' bornées. On en déduit:

$$\int_{\mathbb{D}} g_n(x)(f(x) - \langle f \rangle) \, \mathrm{d}x = \int_{\mathbb{D}} g_n(x)(h'(x) - xh(x)) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} 0.$$

Comme $\int_{\mathbb{R}} g_n(x) \langle f \rangle dx = \langle f \rangle$, cela donne:

$$\int_{\mathbb{R}} g_n(x) f(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} G(x) f(x) \, \mathrm{d}x.$$

3) Notations et remarques

Par hypothèse, la fonction $x \mapsto x^2 g_n(x)$ est continue et intégrable sur \mathbb{R} . Par comparaison, pour toute fonction ψ continue sur \mathbb{R} et telle que $\psi(x) = O(x^2)$ au voisinage de $\pm \infty$, la fonction ψ g_n est aussi intégrable sur \mathbb{R} et donc sur tout sous-intervalle de \mathbb{R} . Cela prouve que toutes les intégrales qui suivent existent au sens propre.

Par hypothèse aussi, il existe une constante $K_1 > 0$ telle que

$$\forall n \in \mathbb{N}, \qquad 0 \le \int_{-\infty}^{+\infty} x^2 g_n(x) \, \mathrm{d}x \le K_1.$$

En prenant f constante égale à 1:

$$\int_{-\infty}^{+\infty} g_n(x) dx \xrightarrow[n \to +\infty]{} \int_{-\infty}^{+\infty} G(x) dx = 1$$

donc il existe une constante $K_2 \geq 1$ telle que

$$\forall n \in \mathbb{N}, \qquad 0 \le \int_{-\infty}^{+\infty} g_n(x) \, \mathrm{d}x \le K_2.$$

Enfin, il faut modifier les énoncés des questions **3.b** et **3.c** pour pouvoir conclure en **3.e**. Au **b**, il faut montrer que $\int_{\mathbb{R}} (1 - \chi_R(x)) g_n(x) (h'(x) - xh(x)) dx$ tend vers 0 uniformément par rapport à n quand R tend vers l'infini; au **c**, il faut montrer que la propriété demandée est vrai pour R assez grand.

3)a. Si h est C^{∞} à support compact, la fonction $\varphi: x \longmapsto h'(x) - xh(x)$ est C^{∞} et bornée, donc

$$\int_{\mathbb{R}} g_n(x)(h'(x) - xh(x)) dx \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} G(x)(h'(x) - xh(x)) dx = 0$$

puisque φ est C^1 avec φ et φ' bornées.

3)b. Les fonctions χ_R sont uniformément bornées : il existe M>0 tel que

$$\forall x \in \mathbb{R}, \ \forall R > 0, \qquad |\chi_R(x)| \le M$$

Les fonctions h et h' sont bornées par hypothèse:

$$\forall x \in \mathbb{R}, |h'(x) - xh(x)| \le ||h||_{\infty} |x| + ||h'||_{\infty}.$$

Enfin, l'expression $1 - \chi_R(x)$ est identiquement nulle sur [-R, R] et la fonction g_n est positive, donc

$$\left| \int_{\mathbb{R}} (1 - \chi_R(x)) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| = \left| \int_{|x| \ge R} (1 - \chi_R(x)) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right|$$

$$\le (1 + M) \left(\|h'\|_{\infty} \int_{|x| \ge R} g_n(x) \, \mathrm{d}x + \|h\|_{\infty} \int_{|x| \ge R} |x| g_n(x) \, \mathrm{d}x \right)$$

Pour obtenir une majoration uniforme par rapport à n, on remarque que pour $|x| \geq R$:

$$g_n(x) \le \frac{1}{R^2} x^2 g_n(x)$$
 et $|x| g_n(x) \le \frac{1}{R} x^2 g_n(x)$.

On en déduit que (la constante K_1 a été définie au début du ${\bf 3}$)

$$\forall R > 0, \ \forall \ n \in \mathbb{N}, \qquad \left| \int_{\mathbb{R}} (1 - \chi_R(x)) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| \le (1 + M) K_1 \left(\frac{\|h'\|_{\infty}}{R^2} + \frac{\|h\|_{\infty}}{R} \right)$$

Comme ce majorant est indépendant de n et tend vers 0 quand R tend vers l'infini, nous obtenons:

$$\forall \varepsilon > 0, \ \exists R_{\varepsilon} > 0, \ \forall R \ge R_{\varepsilon}, \ \forall n \in \mathbb{N}, \ \left| \int_{\mathbb{R}} (1 - \chi_R(x)) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| \le \varepsilon.$$

3)c. Pour tout R > 0, la fonction $f: x \mapsto \chi_R(x)(h'(x) - xh(x))$ est bornée et de classe C^{∞} , donc

$$\int_{\mathbb{R}} g_n(x) f(x) dx \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} G(x) f(x) dx.$$

Il suffit donc de montrer que $I_R = \int_{\mathbb{R}} G(x) f(x) dx$ tend vers 0 quand R tend vers l'infini pour obtenir le résultat demandé, ce qui se montre facilement en appliquant **III.1** à h, qui est bien C^1 avec h et h' bornées:

$$|I_R| = \left| \int_{\mathbb{R}} G(x) \chi_R(x) (h'(x) - xh(x)) \, \mathrm{d}x - \int_{\mathbb{R}} G(x) (h'(x) - xh(x)) \, \mathrm{d}x \right|$$

$$\leq \int_{\mathbb{R}} G(x) (\chi_R(x) - 1) (h'(x) - xh(x)) \, \mathrm{d}x$$

$$\leq (1 + M) \left(\int_{-\infty}^{-R} G(x) |h'(x) - xh(x)| \, \mathrm{d}x + \int_{R}^{+\infty} G(x) |h'(x) - xh(x)| \, \mathrm{d}x \right) \xrightarrow{R \to +\infty} 0$$

3)d. Supposons maintenant que h est de classe C^1 avec toujours h et h' bornées. Pour que le résultat reste valable, il suffit de démontrer que l'on a toujours

$$\int_{\mathbb{R}} g_n(x)\chi_R(x)(h'(x) - xh(x)) dx \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} G(x)\chi_R(x)(h'(x) - xh(x)) dx$$

pour tout R > 0, avec seulement h de classe C^1 , la fin de la preuve précédente restant validequand h n'est que de classe C^1 . Soit donc R > 0 et $\varepsilon > 0$. Il existe alors, par le théorème d'approximation de Weïerstrass, un polynôme Q tel que

$$\forall x \in [-R-1, R+1], |Q(x) - h'(x)| \le \varepsilon$$

En notant $P: x \longmapsto h(0) + \int_0^x Q(t) dt$, nous avons

$$\forall x \in [-R-1, R+1], \ |P(x) - h(x)| = \left| \int_0^x (Q(t) - h'(t)) dt \right| \le \varepsilon |x|$$

Notons alors $f: x \mapsto \chi_R(x)(h'(x) - xh(x))$ et $f_1: x \mapsto \chi_R(x)(P'(x) - xP(x))$. Nous avons:

$$\forall x \in [-R-1, R+1], |f(x) - f_1(x)| \le M \varepsilon (1+x^2)$$

et cette égalité est vérifiée sur tout \mathbb{R} , puisque $f(x) - f_1(x) = 0$ en dehors de [-R-1, R+1]. On en déduit (les constantes K_1 et K_2 ont été définies au début de la question 3)

$$\forall n \in \mathbb{N}, \left| \int_{\mathbb{R}} g_n(x) f_1(x) \, \mathrm{d}x - \int_{\mathbb{R}} g_n(x) f(x) \, \mathrm{d}x \right| \leq M \varepsilon \int_{\mathbb{R}} g_n(t) (1 + x^2) \, \mathrm{d}t$$
$$\leq M \left(K_2 + K_1 \right) \varepsilon$$

De même, nous obtenons

$$\left| \int_{\mathbb{D}} G(x) f_1(x) \, \mathrm{d}x - \int_{\mathbb{D}} G(x) f(x) \, \mathrm{d}x \right| \le M \left(K_2 + K_1 \right) \varepsilon.$$

D'autre part, comme f_1 est de classe C^{∞} avec f_1 et f'_1 bornées, il existe un rang n_0 tel que:

$$\forall n \ge n_0, \qquad \left| \int_{\mathbb{R}} g_n(x) f_1(x) \, \mathrm{d}x - \int_{\mathbb{R}} G(x) f_1(x) \, \mathrm{d}x \right| \le \varepsilon.$$

Il reste à recoller les trois inégalités pour obtenir:

$$\forall n \ge n_0, \qquad \left| \int_{\mathbb{R}} g_n(x) f(x) \, \mathrm{d}x - \int_{\mathbb{R}} G(x) f(x) \, \mathrm{d}x \right| \le \varepsilon \left(1 + 2M(K_1 + K_2) \right)$$

et la convergence est démontrée.

3)e. Soit $\varepsilon > 0$. D'après les questions b et c, il existe $R_0 > 0$ tel que l'on ait:

$$\begin{cases} \forall n \in \mathbb{N}, \ \left| \int_{\mathbb{R}} (1 - \chi_{R_0}(x)) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| \leq \varepsilon \\ \left| \lim_{n \to +\infty} \int_{\mathbb{R}} g_n(x) \chi_{R_0}(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| \leq \varepsilon \end{cases}$$

On en déduit qu'il existe $n_0 \in \mathbb{N}$ tel que:

$$\forall n \ge n_0, \qquad \left| \int_{\mathbb{R}} g_n(x) \chi_{R_0}(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| \le 2\varepsilon$$

ce qui donne pour tout $n \geq n_0$:

$$\left| \int_{\mathbb{R}} g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| \leq \left| \int_{\mathbb{R}} \chi_{R_0}(x) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| + \left| \int_{\mathbb{R}} (1 - \chi_{R_0}(x)) g_n(x) (h'(x) - xh(x)) \, \mathrm{d}x \right| < 3\varepsilon$$

Remarque: on peut alors reprendre la démonstration du II.2. pour en déduire que

$$\int_{\mathbb{R}} g_n(x) f(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \int_{\mathbb{R}} G(x) f(x) \, \mathrm{d}x$$

pour toute fonction f continue et bornée sur \mathbb{R} . Cela signifie que la suite de mesures positives finies de densités g_n converge étroitement vers la mesure (de probabilité) gaussienne centrée réduite.

Partie III

Remarquons pour commencer que toutes les espérances utilisées dans la suite du corrigé existent, puisque toutes les variables aléatoires manipulées sont bornées.

- 1) On sait que $\varphi'(x) x\varphi(x) = f(x) \langle f \rangle$ pour tout $x \in \mathbb{R}$, donc $\varphi'(Z_n) Z_n\varphi(Z_n) = f(Z_n) \langle f \rangle$ et le résultat demandé est évident.
- 2) Il suffit d'appliquer l'inégalité de Taylor-Lagrange à la fonction φ (qui est de classe C^2 , de dérivée seconde bornée comme vu à la question III.6:

$$\left| \varphi(Z_n) - \varphi(Z_{n,i}) - (Z_n - Z_{n,i}) \varphi'(Z_{n,i}) \right| \le \frac{(Z_n - Z_{n,i})^2}{2} C_2 \left(\|f\|_{\infty} + \|f'\|_{\infty} \right)$$

On a ensuite $Z_n - Z_{n,i} = \frac{X_i}{\sqrt{n}}$ et on obtient l'inégalité demandée en multipliant par $|X_i|$ et en passant à l'espérance.

3) Comme $X_1, \ldots, X_i, \ldots, X_n$ sont des variables aléatoires discrètes et indépendantes, alors quelle que soit la fonction ψ , X_i et $\psi(X_1, \ldots, X_{i-1}, X_{i+1}, X_n)$ sont des variables aléatoires indépendantes (lemme dit des coalitions). En particulier, X_i et

$$\varphi(Z_{n,i}) = \varphi\left(\frac{X_1 + \dots + X_{i-1} + X_{i+1} + \dots + X_n}{\sqrt{n}}\right)$$

sont indépendantes, de même que X_i et $\varphi'(Z_{n,i})$. Comme ces variables sont bornées, elles sont d'espérance finie et

$$\mathbf{E}(X_i \varphi(Z_{n,i})) = \mathbf{E}(X_i) \mathbf{E}(\varphi(Z_{n,i})) = 0,$$

$$\mathbf{E}(X_i^2 \varphi'(Z_{n,i})) = \mathbf{E}(X_i^2) \mathbf{E}(\varphi'(Z_{n,i})) = \mathbf{V}(X_i) \mathbf{E}(\varphi'(Z_{n,i})) = \mathbf{E}(\varphi'(Z_{n,i}))$$

puisque X_i est centrée et réduite.

Par linéarité de l'espérance,

$$\mathbf{E}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}\varphi(Z_{n})-X_{i}\varphi(Z_{n,i})-\frac{X_{i}^{2}}{\sqrt{n}}\varphi'(Z_{n,i})\right)=\mathbf{E}\left(Z_{n}\varphi(Z_{n})\right)-\frac{1}{n}\sum_{i=1}^{n}\mathbf{E}\left(\varphi'(Z_{n,i})\right)$$

et d'après l'inégalité de la moyenne et III.2,

$$\left| \mathbf{E} \big(Z_n \varphi(Z_n) \big) - \frac{1}{n} \sum_{i=1}^n \mathbf{E} \big(\varphi'(Z_{n,i}) \big) \right| \leq \mathbf{E} \bigg(\frac{1}{\sqrt{n}} \sum_{i=1}^n \left| X_i \varphi(Z_n) - X_i \varphi(Z_{n,i}) - \frac{X_i^2}{\sqrt{n}} \varphi'(Z_{n,i}) \right| \bigg)$$

$$\leq \frac{C_2}{2} (\|f\|_{\infty} + \|f'\|_{\infty}) \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\mathbf{E}(|X_i|^3)}{n}$$

$$\leq \frac{C_2}{2} (\|f\|_{\infty} + \|f'\|_{\infty}) \frac{1}{\sqrt{n}} \mathbf{E}(|X_1|^3)$$

puisque les X_i sont toutes de même loi.

Comme X_1 est bornée par M, alors $\mathbf{P}(|X_1|^3 \le M X_1^2) = 1$, donc $\mathbf{E}(|X_1|^3) \le M \mathbf{E}(X_1^2) = M \mathbf{V}(X_1) = M$ puisque X_1 est centrée et réduite, d'où l'inégalité demandée.

4) Nous avons cette fois, pour $i \in [1, n]$:

$$|\varphi'(Z_n) - \varphi'(Z_{n,i})| \le \frac{|X_i|}{\sqrt{n}} C_2(||f||_{\infty} + ||f'||_{\infty})$$

d'où

$$\left| E(\varphi'(Z_n)) - \frac{1}{n} \sum_{i=1}^n E(\varphi'(Z_{n,i})) \right| = \left| E\left(\frac{1}{n} \sum_{i=1}^n \varphi'(Z_n) - \varphi'(Z_{n,i})\right) \right|$$

$$\leq \frac{C_2}{\sqrt{n}} (\|f\|_{\infty} + \|f'\|_{\infty}) \frac{1}{n} \sum_{i=1}^n E(|X_i|)$$

Comme X_i et 1 sont des variables aléatoires bornées, elles sont de carré intégrable et d'après l'inégalité de Schwarz, leur produit est intégrable et

$$\mathbf{E}(|X_i|) \le \sqrt{\mathbf{E}(X_i^2)} \sqrt{\mathbf{E}(1)} = \mathbf{V}(X_i) = 1$$

puisque X_i est centrée et réduite, d'où l'inégalité demandée.

5) Le résultat est une conséquence directe des questions précédentes:

$$\mathbf{E}(f(Z_n)) - \int_{\mathbb{R}} f(x)G(x) \, \mathrm{d}x = \mathbf{E}(f(Z_n)) - \langle f \rangle = \mathbf{E}(f(Z_n) - \langle f \rangle)$$

donc

$$\begin{vmatrix} \mathbf{E}(f(Z_n)) - \int_{\mathbb{R}} f(x)G(x) \, \mathrm{d}x \end{vmatrix} = |\mathbf{E}(\varphi'(Z_n)) - \mathbf{E}(Z_n\varphi(Z_n))|$$

$$\leq \left| \mathbf{E}(\varphi'(Z_n)) - \frac{1}{n} \sum_{i=1}^n \mathbf{E}(\varphi'(Z_{n,i})) \right| + \left| \mathbf{E}(Z_n\varphi(Z_n)) - \frac{1}{n} \sum_{i=1}^n \mathbf{E}(\varphi'(Z_{n,i})) \right|$$

$$\leq \frac{C_2(1 + \frac{1}{2}M)}{\sqrt{n}} \left(\|f\|_{\infty} + \|f'\|_{\infty} \right)$$

- 6) Nous allons encadrer l'indicatrice de $]-\infty, a[$ par des fonctions de classe C^1 , construites en raccordant des polynômes: nous commençons par fixer $\varepsilon > 0$ (nous le fixerons un peu plus loin) et nous construisons
 - la fonction f de classe C^1 égale à 1 sur $]-\infty, a-\varepsilon]$, égale à 0 sur $[a,+\infty[$ et polynomiale de degré 3 sur $[a-\varepsilon,a]$. On cherche donc un réel K tel que

$$\forall x \in [a - \varepsilon, a], \quad f'(x) = K(x - a) (x - (a - \varepsilon)) = K[(x - a)^2 + \varepsilon(x - a)].$$

Comme on impose f(a) = 0 et $f(a - \varepsilon) = 1$, on en déduit que $K = \frac{6}{\alpha^3}$, d'où:

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} 1 & \text{si } x \le a - \varepsilon \\ \frac{(x-a)^2(2x - 2a + 3\varepsilon)}{\varepsilon^3}. & \text{si } a - \varepsilon \le x \le a \\ 0 & \text{si } x \ge a \end{cases}$$

• la fonction g de classe C^1 égale à 1 sur $]-\infty,a]$, égale à 0 sur $[a+\varepsilon,+\infty[$ et polynomiale de degré 3 sur $[a,a+\varepsilon]$

Il est clair que $||f||_{\infty} = ||g||_{\infty} = 1$ et $||f'||_{\infty} = ||g'||_{\infty} = |f'(a - \varepsilon/2)| = \frac{3}{2\varepsilon}$ (l'extremum d'un polynôme de degré 2 est atteint au milieu de ses racines).

On a ainsi défini deux fonctions f et g, de classe C^1 , bornées et de dérivées bornées sur \mathbb{R} , telles que

$$\forall x \in \mathbb{R}, \ f(x) \le \mathbb{1}_{]-\infty,a]}(x) \le g(x).$$

On en déduit que $f(Z_n) \leq \mathbb{1}_{]-\infty,a]}(Z_n) \leq g(Z_n)$ et que

$$\mathbf{E}(f(Z_n)) \le \mathbf{P}((Z_n \le a) \le \mathbf{E}(g(Z_n))$$

par croissance de l'espérance mathématique, mais aussi que

$$\int_{\mathbb{R}} f(x)G(x) \, \mathrm{d}x \le \int_{-\infty}^{a} G(x) \, \mathrm{d}x \le \int_{\mathbb{R}} g(x)G(x) \, \mathrm{d}x$$

par croissance de l'intégrale (la fonction G étant positive et intégrable sur \mathbb{R}).

On déduit de ces deux encadrements que

$$\mathbf{E}(f(Z_n)) - \int_{\mathbb{R}} gG \leq \mathbf{P}(Z_n \leq a) - \int_{-\infty}^a G(x) \, \mathrm{d}x \leq \mathbf{E}(g(Z_n)) - \int_{\mathbb{R}} fG$$

c'est-à-dire

$$\mathbf{E}(f(Z_n)) - \int_{\mathbb{R}} fG - \int_{\mathbb{R}} (g - f)G \le \mathbf{P}(Z_n \le a) - \int_{-\infty}^a G(x) \, \mathrm{d}x \le \mathbf{E}(g(Z_n)) - \int_{\mathbb{R}} gG + \int_{\mathbb{R}} (g - f)G.$$

La différence g-f est nulle en dehors de $[a-\varepsilon,a+\varepsilon]$ et majorée par 1 sur ce segment. Par conséquent,

$$0 \le \int_{R} (g(x) - f(x))G(x) \, \mathrm{d}x \le (2\varepsilon) \times 1 \times \frac{1}{\sqrt{2\pi}} = \sqrt{\frac{2}{\pi}} \, \varepsilon.$$

D'après III.5, les deux quantités

$$\left| \mathbf{E}(f(Z_n)) - \int_{\mathbb{R}} fG \right|$$
 et $\left| \mathbf{E}(g(Z_n)) - \int_{\mathbb{R}} gG \right|$

sont majorées par

$$\frac{C_2(2+M)}{2\sqrt{n}}\left(1+\frac{3}{2\varepsilon}\right)$$

donc pour tout $a \in \mathbb{R}$, $n \in \mathbb{N}^*$ et $\varepsilon > 0$:

$$\left| \mathbf{P}(Z_n \le a) - \int_{-\infty}^a G(x) \, \mathrm{d}x \right| \le \frac{C_2(2+M)}{2\sqrt{n}} \left(1 + \frac{3}{2\varepsilon} \right) + \sqrt{\frac{2}{\pi}} \, \varepsilon.$$

En choisissant $\varepsilon = n^{-1/4}$, on en déduit que

$$\forall a \in \mathbb{R}, \ \mathbf{P}(Z_n \le a) = \int_{-\infty}^a G(x) \, \mathrm{d}x + O(n^{-1/4}).$$

Remarques: la majoration trouvée montre que la fonction de répartition de Z_n converge uniformément sur \mathbb{R} vers la fonction de répartition d'un loi gaussienne centrée réduite (puisque le majorant est indépendant de a). Cette preuve est due à Lindeberg, comme on peut le lire dans l'article "Une démonstration élémentaire du théorème central limite" de Robert C. Dalang (EPFL):

http://www.researchgate.net/publication/37465555_Une_dmonstration_lmentaire_du_thorme_central_limite

Partie IV

1)a. Tout réel $x \in [-M, M]$ est une combinaison convexe de (-M) et de M:

$$x = \frac{M+x}{2M}M + \frac{M-x}{2M}(-M).$$

Comme φ est convexe, on en déduit que

$$\forall x \in [-M, M], \quad \varphi(x) \le \frac{M+x}{2M} \varphi(M) + \frac{M-x}{2M} \varphi(-M)$$

(le graphe de φ est situé sous la corde qu'il intercepte) et comme la variable aléatoire X est presque sûrement comprise entre (-M) et M, on en déduit que

$$\mathbf{P}\bigg(\varphi\big(X(\omega)\big) \le \frac{M + X(\omega)}{2M}\,\varphi(M) + \frac{M - X(\omega)}{2M}\,\varphi(-M)\bigg) = 1.$$

Par linéarité et positivité de l'espérance, on en déduit que

$$\mathbf{E}\big(\varphi(X)\big) \leq \frac{M + \mathbf{E}(X)}{2M}\varphi(M) + \frac{M - \mathbf{E}(X)}{2M}\varphi(-M)$$

et comme X est centrée,

$$\mathbf{E}(\varphi(X)) \le \frac{\varphi(M) + \varphi(-M)}{2}.$$

Remarque: l'inégalité de Jensen est une autre conséquence, plus classique, de la convexité de φ : le point d'abscisse $\mathbf{E}(X)$ et d'ordonnée $\varphi(\mathbf{E}(X))$ est un point du graphe de φ et il existe donc un réel θ tel que

$$\forall x \in \mathbb{R}, \quad \varphi(x) \ge \varphi(\mathbf{E}(X)) + \theta(x - \mathbf{E}(X))$$

(le graphe de φ est situé au-dessus de ses droites d'appui). Par linéarité et positivité de l'espérance, on en déduit que

$$\mathbf{E}(\varphi(X)) \ge \varphi(\mathbf{E}(X)) + \theta(\mathbf{E}(X) - \mathbf{E}(X)) = \varphi(\mathbf{E}(X)).$$

1)b. Pour tout $n \in \mathbb{N}$, nous avons $(2n)! \geq 2^n n!$, d'où:

$$\forall x \in \mathbb{R}, \ \operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \le \sum_{n=0}^{+\infty} \frac{x^{2n}}{2^n n!} = e^{\frac{1}{2}x^2}$$

ce qui donne l'inégalité demandée, avec x = tM.

2) Comme exp est une bijection strictement croissante de \mathbb{R} sur \mathbb{R}_+^* ,

$$\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} \ge \delta\right] = \left[\exp\left(\frac{1}{n}\sum_{i=1}^{n}tX_{i}\right) \ge e^{t\delta}\right]$$

et comme

$$\exp\left(\frac{1}{n}\sum_{i=1}^{n}tX_{i}\right) = \prod_{i=1}^{n}\exp\left(\frac{tX_{i}}{n}\right)$$

est une variable aléatoire positive d'espérance finie (elle est presque sûrement bornée), on déduit de l'inégalité de Markov que

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq \delta\right) \leq e^{-t\delta}\mathbf{E}\left[\exp\left(\frac{1}{n}\sum_{i=1}^{n}tX_{i}\right)\right].$$

Comme les X_i sont des variables aléatoires presque sûrement bornées, indépendantes et de même loi, les variables aléatoires $\exp(tX_i/n)$ sont indépendantes, d'espérance finie et de même loi, donc

$$\mathbf{E}\left[\prod_{i=1}^{n} \exp\left(\frac{tX_{i}}{n}\right)\right] = \prod_{i=1}^{n} \mathbf{E}\left[\exp\left(\frac{tX_{i}}{n}\right)\right] = \left(\mathbf{E}\left[\exp\left(\frac{tX_{1}}{n}\right)\right]\right)^{n} \le \exp\left(\frac{t^{2}M^{2}}{2n}\right)$$

d'après **IV.1.** (avec $t \leftarrow t/n$).

On a ainsi démontré que

$$\forall t \ge 0, \qquad \mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n} X_i \ge \delta\right) \le e^{-t\delta} \exp\left(\frac{t^2 M^2}{2n}\right)$$

et en passant à l'inf dans le second membre (qui atteint son minimum pour $t = \delta n/M^2$), on obtient

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \ge \delta\right) \le \exp\left(-\frac{\delta^{2}n}{2M^{2}}\right).$$

3) On a établi au III.6 qu'il existe une constante K > 0 telle que

$$\forall n \in \mathbb{N}^*, \ \forall \ a \in \mathbb{R}, \qquad \left| \mathbf{P}(Z_n \le a) - \int_{-\infty}^a G(x) x \right| \le K n^{-1/4}.$$

Cet encadrement donne la limite (pour la convergence uniforme sur \mathbb{R}) de la fonction de répartition de Z_n : il s'agit d'un résultat de convergence en loi (une des nombreuses moutures du théorème de Moivre-Laplace). On a établi au **IV.2** que

$$\forall n \in \mathbb{N}^*, \ \forall \ \delta > 0, \qquad \mathbf{P}\left(\frac{Z_n}{\sqrt{n}} \ge \delta\right) \le e^{-n\delta^2/2M^2},$$

ce qui ne donne qu'une estimation de la queue de la distribution de Z_n : il s'agit d'un résultat de grandes déviations.

Comme a, δ et n peuvent être arbitrairement choisis, on peut appliquer le résultat de III.6 avec $a = \delta \sqrt{n}$:

$$\left| \mathbf{P} \left(\frac{Z_n}{\sqrt{n}} > \delta \right) - \int_{\delta, \sqrt{n}}^{+\infty} G(x) x \right| \le K n^{-1/4}$$

et comme (résultat classique)

$$\int_{y}^{+\infty} G(x) \, \mathrm{d}x \underset{y \to +\infty}{\sim} \frac{1}{\sqrt{2\pi}y} e^{-y^{2}/2},$$

on obtient seulement $\mathbf{P}(Z_n/\sqrt{n} > \delta) = O(n^{-1/4})$, ce qui est beaucoup moins précis que la majoration obtenue au **IV.2**.

De même, on peut appliquer le résultat du IV.2 avec $\delta = a/\sqrt{n}$. On obtient seulement

$$\forall n \ge 1, \quad \mathbf{P}(Z_n \ge a) \le e^{-a^2/2M^2}$$

ce qui ne permet pas de connaître la limite en loi de Z_n (ni même de prouver la convergence en loi), alors qu'on a démontré au **III.6** que

$$\mathbf{P}(Z_n \ge a) \xrightarrow[n \to +\infty]{} \int_a^{+\infty} e^{-x^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}} \underset{a \to +\infty}{\sim} \frac{e^{-a^2/2}}{\sqrt{2\pi}a}.$$

Bref : les deux résultats établis n'ont pas grand chose de comparable. Le premier (III.6) est précis sur la limite et imprécis sur la vitesse de convergence ; le second (IV.2) est imprécis sur la limite mais très précis sur la vitesse de convergence. À chaque problématique ses techniques !

4)a. Il faut évidemment comprendre que f est prolongée par continuité en 0. Nous avons:

$$|f(X)| = \left| \sum_{n=0}^{+\infty} \frac{X^n}{(n+2)!} \right| \le \sum_{n=0}^{+\infty} \frac{M^n}{(n+2)!} = f(M).$$

4)b. Soit $t \in \mathbb{R}_+$. D'après l'astuce taupinale et la majoration du **IV.4.a.**,

$$\forall |x| \le M, \quad e^{tx} = 1 + tx + t^2 x^2 \frac{e^{tx} - 1 - tx}{t^2 x^2}$$

 $\le 1 + tx + t^2 x^2 f(tM).$

On en déduit que $e^{tX_i} \le 1 + tX_i + t^2X_i^2f(tM)$ presque sûrement. Donc, par linéarité et positivité de l'espérance,

$$\mathbf{E}(e^{tX_i}) \le 1 + t\mathbf{E}(X_i) + t^2\mathbf{E}(X_i^2)f(tM) = 1 + t^2f(tM)$$

puisque X_i est centrée et réduite et finalement

$$\mathbf{E}(e^{tX_i}) \le \exp(t^2 f(tM))$$

d'après l'inégalité de convexité rappelée par l'énoncé.

On a d'autre part, pour tout $t \ge 0$ et en notant $S_n = \sum_{i=1}^n X_i$:

$$P\left(\frac{S_n}{n} \ge \delta\right) = P\left(e^{tS_n} \ge e^{nt\delta}\right) \le e^{-nt\delta} E\left(e^{tS_n}\right) = e^{-nt\delta} \prod_{i=1}^n E(e^{tX_i})$$

en utilisant l'inégalité de Markov et l'indépendance des X_i . L'inégalité précédente donne:

$$P\left(\frac{S_n}{n} \ge \delta\right) \le e^{-n/M^2(t\delta - e^{tM} + 1 - tM)}.$$

En choisissant $t = \frac{1}{M} \ln(M\delta + 1)$, valeur en laquelle la fonction $t \mapsto M^2 t \delta - e^{tM} + 1 - tM$ atteint son maximum, nous obtenons exactement l'inégalité demandée.