Intersections atypiques

ENS MP 2021, MATHS C

Le thème de ce problème est l'étude des intersections atypiques : étant donnés deux ensembles A et B, une fonction $f: A \to B$ et un sous-ensemble « exceptionnel » C de $A \times B$, le graphe de f peut ne pas rencontrer C en beaucoup de points, sauf si la fonction f est elle-même « exceptionnelle ».

La première partie, de nature plus algébrique, étudie le cas où la fonction f est donnée par une fraction rationnelle, l'ensemble « exceptionnel » étant soit $\{(x,y) \in \mathbb{C}^2 \; ; \; |x|=|y|=1\}$, soit l'ensemble des points du plan dont les cordonnées sont des racines de l'unité.

La deuxième partie, plus analytique et totalement indépendante de la première, étudie le cas d'une fonction « transcendante » f (par exemple $f(x) = e^x$), l'ensemble exceptionnel C étant un réseau du plan.

Notations

Si X est un ensemble fini, on note |X| son cardinal. Si X est un ensemble infini, on pose $|X| = \infty$. Par convention, ∞ est supérieur à tout nombre réel.

Si K est un sous-corps de \mathbb{C} , on note $K[X]_n$ l'ensemble des polynômes à coefficients dans K, de degré inférieur ou égal à n, et on note K(X) l'ensemble des fractions rationnelles F(X) = P(X)/Q(X), avec $P, Q \in K[X]$ et $Q \neq 0$. L'inclusion de K[X] dans $\mathbb{C}[X]$ se prolonge en une injection de corps $K(X) \to \mathbb{C}(X)$, et on se permettra par la suite d'identifier K(X) à un sous-corps de $\mathbb{C}(X)$.

Si I est un intervalle de **R** non vide et non réduit à un point, on note $\mathscr{C}^{\infty}(I, \mathbf{R})$ l'ensemble des fonctions numériques de classe \mathscr{C}^{∞} sur I. Si $f \in \mathscr{C}^{\infty}(I, \mathbf{R})$ et si n est un entier naturel, on note $f^{(n)}$ la n-ième dérivée de f.

Si A est un ensemble et si $f: A \to \mathbb{C}$ est une fonction, on note

$$Z(f) = \{x \in A ; f(x) = 0\}$$

l'ensemble de ses zéros et

$$\Gamma(f) = \{(x, f(x)) ; x \in A\} \subset A \times C$$

son graphe.

Question préliminaire

1) Soit $I \subset \mathbf{R}$ un intervalle et $n \ge 2$ un entier. Montrer que, si $g \in \mathscr{C}^{\infty}(I, \mathbf{R})$ vérifie $|Z(g)| \ge n$, alors $|Z(g^{(i)})| \ge n - i$ pour tout $1 \le i \le n - 1$.

I Intersections atypiques et fractions rationnelles

Pour $G(X) = P(X)/Q(X) \in C(X)$, avec $P, Q \in C(X)$ premiers entre eux et $Q \neq 0$, on note

$$\mathcal{P}(G) = \left\{ x \in \mathbf{C} \; ; \; Q(x) = 0 \right\}$$

l'ensemble des pôles de G et on note abusivement $G: \mathbb{C} \setminus \mathscr{P}(G) \to \mathbb{C}$ la fonction envoyant x sur P(x)/Q(x).

Fractions rationnelles et rationalité

Soit K un sous-corps de \mathbb{C} et soit $F \in \mathbb{C}(X)$ telle que $F(K \setminus \mathscr{P}(F)) \cap K$ soit un ensemble infini. On se propose de montrer que $F \in K(X)$. On écrit F(X) = P(X)/Q(X) avec $P \in \mathbb{C}[X]_p$ et $Q \in \mathbb{C}[X]_q \setminus \{0\}$ pour certains entiers $p, q \ge 0$. On note d = p + q + 1.

2.a) Soient $x_1, \ldots, x_d, y_1, \ldots, y_d \in K$. Montrer que l'application linéaire

$$\varphi \colon \ \mathrm{K}[\mathrm{X}]_p \times \mathrm{K}[\mathrm{X}]_q \longrightarrow \mathrm{K}^d$$
$$(\mathrm{U}, \mathrm{V}) \longmapsto \left(\mathrm{U}(x_i) - y_i \, \mathrm{V}(x_i) \right)_{1 \leqslant i \leqslant d}$$

n'est pas injective.

2.b) Soient $x_1, \ldots, x_d \in K \setminus \mathcal{P}(F)$ deux à deux distincts tels que

$$F(x_1), \ldots, F(x_d) \in K$$
.

Montrer qu'il existe $U \in K[X]_p$ et $V \in K[X]_q$ tels que $(U, V) \neq (0, 0)$ et $P(x_i) V(x_i) = Q(x_i) U(x_i)$ pour $1 \leq i \leq d$. En déduire que $F \in K(X)$.

2.c) Soit $F \in C(X)$ telle que $F(K \setminus \mathcal{P}(F)) \cap K$ soit un ensemble infini. Montrer que $F \in K(X)$.

Sujet de concours 2 ENS MP 2021, Maths C

Intersections avec le cercle unité

On note $\mathbf{U} = \{z \in \mathbf{C} ; |z| = 1\}$. On dit qu'une fraction rationnelle $\mathbf{F} \in \mathbf{C}(\mathbf{X})$ est spéciale si l'ensemble

$$\{z \in \mathbf{U} \setminus \mathscr{P}(\mathbf{F}) : \mathbf{F}(z) \in \mathbf{U}\}$$

est infini. On se propose de décrire les fractions rationnelles spéciales

Si $z \in \mathbb{C}$, on note \overline{z} son conjugué. Si $P(X) = \sum_{i=0}^d a_i X^i \in \mathbb{C}[X]$, on note

$$\overline{P}(X) = \sum_{i=0}^{d} \overline{a_i} X^i.$$

Dans les questions 3 à 5, on fixe $F(X) = P(X)/Q(X) \in \mathbf{C}(X)$, avec $P, Q \in \mathbf{C}[X]$ et $Q \neq 0$. On pose $\overline{F}(X) = \overline{P}(X)/\overline{Q}(X)$ et $G(X) = \overline{F}(1/X)$.

- **3.a)** Soit $z \in \mathbf{U} \setminus \mathcal{P}(F)$. Montrer que $F(z) \in U$ si et seulement si F(z) G(z) = 1.
- **3.b**) En déduire que F est spéciale si et seulement si $G(X) \cdot F(X) = 1$.
- **4)** Montrer que, si $\alpha \in \mathbb{C}$, alors $B_{\alpha}(X) = \frac{X \alpha}{1 \bar{\alpha}X}$ est spéciale. Que vaut $B_{\alpha}(X)$ pour $\alpha = 0$ et pour $\alpha \in \mathbf{U}$?
- 5) On suppose que F est spéciale.
- **5.a)** Soit $\alpha \in \mathbb{C}^* \setminus \mathcal{P}(F)$. Montrer que $F(\alpha) = 0$ si et seulement si $1/\bar{\alpha} \in \mathcal{P}(F)$.
- **5.b**) Montrer que si $F \in \mathbb{C}[X]$, alors il existe $c \in \mathbb{U}$ et $d \in \mathbb{N}$ tels que $F(X) = cX^d$.
- **5.c)** Montrer qu'il existe des entiers d, n avec $n \ge 0$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ tels que

$$F(X) = X^d \prod_{i=1}^n B_{a_i}(X).$$

On pourra écrire F(X) = P(X)/Q(X) et raisonner par récurrence sur le nombre de racines de P.

Racines de l'unité

Notons Λ l'ensemble des $z \in \mathbb{C}$ tels qu'il existe entier $n \geqslant 1$ vérifiant $z^n = 1$, i.e. Λ est l'ensemble des racines de l'unité dans \mathbb{C} . On se propose de décrire les fractions rationnelles $F \in \mathbb{C}(X)$ telles que $F(\Lambda \setminus \mathcal{P}(F)) \subset \Lambda$.

Pour $n \ge 1$ on pose $\zeta_n = \exp(2i\pi/n) \in \Lambda$ et on note

$$\mathbf{Q}(\zeta_n) = \{ F(\zeta_n) ; F \in \mathbf{Q}(X) \text{ et } \zeta_n \notin \mathcal{P}(F) \}.$$

Ainsi, $Q(\zeta_n)$ est un sous-corps de \mathbb{C} .

On note φ l'indicatrice d'Euler et on rappelle que $\varphi(1)=1$ et que, si $n=p_1^{k_1}\cdots p_r^{k_r}$ est la factorisation de $n\geqslant 2$, alors $\varphi(n)=\prod_{i=1}^r p_i^{k_i-1}(p_i-1)$. On admet le résultat suivant :

THÉORÈME 1 (admis) Pour tout $n \ge 1$, le corps $\mathbf{Q}(\zeta_n)$ est un \mathbf{Q} -espace vectoriel de dimension $\varphi(n)$.

On fixe dans les questions **6** à **12** une fraction rationnelle $F \in C(X)$ telle que F(1) = 1. On suppose qu'il existe une suite strictement croissante d'entiers $(n_j)_{j \ge 1}$ tels que pour tout $j \ge 1$ on a $n_j \ge 1$, $\zeta_{n_i} \notin \mathcal{P}(F)$ et $F(\zeta_{n_i}) \in \Lambda$.

6) Montrer que, pour tout $j \ge 1$, il existe un unique $q_j \in \left] -\frac{1}{2}; \frac{1}{2} \right]$ tel que

$$F(\zeta_{n_i}) = \exp(2i\pi q_i).$$

- 7) Montrer que $\lim_{i\to\infty} q_i = 0$.
- **8.a**) Soit $P \in \mathbb{C}[X]$ un polynôme tel que P(1) = 0. Calculer $\lim_{n \to \infty} n P(\zeta_n)$.
- **8.b**) Calculer $\lim_{j\to\infty} n_j \left(\mathbf{F}(\zeta_{n_j}) 1 \right)$ et en déduire que la suite $(n_j \, q_j)_{j\geqslant 1}$ converge.
- 9) On suppose qu'il existe un entier $c \ge 1$ tel que $cn_jq_j \in \mathbf{Z}$ pour tout $j \ge 1$. Montrer qu'il existe $d \in \mathbf{Z}$ tel que $F(X) = X^d$.
- 10) En utilisant le résultat établi dans la question 2.b, montrer qu'il existe un entier $p \ge 1$ tel que $F \in \mathbf{Q}(\zeta_p)(X)$.
- 11) Soit $N \ge 1$ un entier, $q \in \mathbf{Q}$ et notons $\zeta = \exp(2i\pi q)$. On suppose que $\zeta \in \mathbf{Q}(\zeta_N)$. On écrit q = u/v avec $u, v \in \mathbf{Z}$ premiers entre eux et $v \ne 0$. Notons ℓ le PPCM de v et N.

Intersections atypiques

- **11.a)** Montrer qu'il existe $a, b \in \mathbf{Z}$ tels que $\zeta_{\ell} = \zeta^a \cdot \zeta_{\mathrm{N}}^b$.
- **11.b**) En utilisant le théorème admis, montrer que $\varphi(\ell) \leqslant \varphi(N)$, puis que $\ell \mid 2N$ et que $2Nq \in \mathbb{Z}$.
- 12) Montrer qu'il existe un entier $c \ge 1$ tel que $cn_jq_j \in \mathbf{Z}$ pour tout $j \ge 1$ et qu'il existe $d \in \mathbf{Z}$ tel que $F(X) = X^d$.
- 13) Décrire les fractions rationnelles $F \in \mathbf{C}(X)$ telles que $F(\Lambda \setminus \mathcal{P}(F)) \subset \Lambda$.

II Intersections atypiques: le cas transcendant

Courbes et fonctions transcendantes

Un intervalle I de **R** sera appelé non trivial si I est non vide et non réduit à un point. Si I est un intervalle non trivial et si $f \in \mathscr{C}^{\infty}(I, R)$, on dit :

- que f est plate en un point $x \in I$ si $f^{(n)}(x) = 0$ pour tout $n \ge 0$, c'est-à-dire que toutes les dérivées successives de f s'annulent en x;
- que f est **transcendante** si pour tout $d \ge 1$ et tous polynômes $P_0 \dots, P_d \in \mathbf{R}[X]$, non tous nuls, la fonction $x \mapsto \sum_{i=0}^d P_i(x) f(x)^i$ n'est plate en aucun point de I.
- 14) Soit $(a_n)_{n\geqslant 0}$ une suite de nombres réels telle que la série $\sum a_n x^n$ converge pour tout réel x. On note $f(x)=\sum_{n=0}^{\infty}a_n\,x^n$ pour tout $x\in\mathbf{R}$, obtenant ainsi une fonction $f:\mathbf{R}\to\mathbf{R}$.

Montrer que $f \in \mathscr{C}^{\infty}(\mathbf{R}, \mathbf{R})$ et que, si f est plate en 0, alors $a_n = 0$ pour tout $n \neq 0$.

- **15)** Soit $n \ge 1$ un entier, $\alpha_1 < \cdots < \alpha_n$ des réels et $P_1, \dots, P_n \in \mathbf{R}[X]$ des polynômes non nuls. Soit $f : \mathbf{R} \to \mathbf{R}$ la fonction définie par $f(x) = \sum_{i=1}^n P_i(x) e^{\alpha_i x}$.
- **15.a)** En calculant $\lim_{x \to +\infty} \frac{f(x)}{x^N e^{ax}}$ pour $N \in \mathbf{Z}$ et $a \in \mathbf{R}$ convenables, montrer que f n'est pas identiquement nulle.
- **15.b)** En déduire que f n'est plate en aucun $x \in \mathbf{R}$. On pourra commencer par traiter le cas x = 0.
- **16)** Montrer que si $P \in \mathbf{R}[X]$ et $\alpha \in \mathbf{R}$ sont non nuls, alors pour tout intervalle non trivial $I \subset \mathbf{R}$ la fonction $f : I \to \mathbf{R}$ définie par $f(x) = P(x) \exp(\alpha x)$ est transcendante.

On fixe pour la suite de cette partie un entier $d \ge 1$ et un segment non trivial $I \subset \mathbf{R}$. On note $\ell(I) = \max I - \min I$ la longueur de I. On a donc $\ell(I) > 0$. Un sous-ensemble C de \mathbf{R}^2 est appelé une \mathbf{d} -courbe s'il existe des nombres réels $(a_{i,j})_{1 \le i,j \le d}$ non tous nuls et tels que

$$C = \left\{ (x, y) \in \mathbf{R}^2 ; \sum_{i=1}^d \sum_{j=1}^d a_{i,j} x^{i-1} y^{j-1} = 0 \right\}.$$

On se propose de démontrer le résultat suivant :

THÉORÈME 2 Soient I un segment non trivial et $f \in \mathscr{C}^{\infty}(I, \mathbf{R})$ une fonction transcendante, de graphe $\Gamma(f)$. Il existe $c_1 \geqslant 1$ tel que $|\Gamma(f) \cap C| \leqslant c_1$ pour toute d-courbe C.

On fixe f comme dans l'énoncé du théorème à démontrer et on note $V \subset \mathscr{C}^{\infty}(I, \mathbf{R})$ le \mathbf{R} -espace vectoriel engendré par les fonctions $x \mapsto x^{i-1} f(x)^{j-1}$ pour $1 \le i, j \le d$. On raisonne par l'absurde en supposant qu'il existe une suite de d-courbes $(C_r)_{r \ge 1}$ telles que $|\Gamma(f) \cap C_r| \ge r^2$ pour tout $r \ge 1$.

- 17) Soit $g \in V$ une fonction non identiquement nulle. Montrer que g n'est plate en aucun $x \in I$.
- 18) Soit $r \ge 1$ un entier. Montrer qu'il existe $g \in V$ non identiquement nulle telle que $|Z(g)| \ge r^2$. Montrer que, pour toute telle fonction g, il existe un segment $K \subset I$, de longueur inférieure ou égale à $\ell(I)/r$, tel que $|Z(g) \cap K| \ge r$.

On pose $n = \dim V$. Soit g_1, \dots, g_n une base de V. On note

$$S_n = \left\{ (a_i)_{1 \leqslant i \leqslant n} \in \mathbf{R}^n \; ; \; \sum_{i=1}^n |a_i| = 1 \right\}.$$

Intersections atypiques

Pour $\underline{a} = (a_i)_{1 \leq i \leq n} \in S_n$, posons $G_{\underline{a}} = a_1 g_1 + \cdots + a_n g_n$.

19) Montrer qu'il existe une suite $(\underline{a}_r)_{r\geqslant 1}$ d'éléments de S_n , ainsi qu'une suite $(K_r)_{r\geqslant 1}$ de segments inclus dans I dont les longueurs tendent vers 0 quand $r\to +\infty$, et tels que $|Z(G_{\underline{a}_r})\cap K_r|\geqslant r$ pour tout $r\geqslant 1$.

20) Montrer que S_n est compact. En déduire qu'il existe $\underline{a} \in S_n$, $x \in I$ et une suite strictement croissante d'entiers $(r_s)_{s\geqslant 1}$ tels que $\lim_{s\to +\infty} \underline{a}_{r_s} = \underline{a}$ et $\lim_{s\to +\infty} \min K_{r_s} = x$.

21) En utilisant la question 1, montrer que $G_{\underline{a}}$ est plate en x et conclure la preuve du théorème 2.

Une inégalité

On fixe un segment non trivial $I \subset \mathbf{R}$, un entier $n \ge 2$ et des fonctions $f_1, \ldots, f_n \in \mathscr{C}^{\infty}(I, \mathbf{R})$. Pour $x_1, \ldots, x_n \in I$ on note

$$A(x_1,\ldots,x_n)=\big(f_i(x_j)\big)_{1\leqslant i,j\leqslant n}\in \mathcal{M}_n(\mathbf{R}).$$

On se propose de démontrer le résultat suivant :

THÉORÈME 3 Il existe $c_2 > 0$ tel que, pour tous $x_1, \ldots, x_n \in I$ deux à deux distincts,

$$\big| \det \mathbf{A}(x_1,\dots,x_n) \big| \leqslant c \prod_{1 \leqslant i < j \leqslant n} |x_i - x_j|.$$

Dans les questions 22 et 23 on fixe $x_1, \ldots, x_n \in I$ deux à deux distincts et on note

$$\beta = \prod_{i=1}^{n-1} (x_n - x_i) = (x_n - x_1) \cdots (x_n - x_{n-1}).$$

- **22)** Soit $f \in \mathscr{C}^{\infty}(\mathbf{I}, \mathbf{R})$.
- **22.a)** Montrer que si $f(x_1) = \cdots = f(x_{n-1}) = 0$ alors il existe $y \in I$ tel que $f(x_n) = \frac{f^{(n-1)}(y)}{(n-1)!}\beta$. On pourra considérer la fonction g définie par $g(x) = \beta f(x) \prod_{i=1}^{n-1} (x x_i) f(x_n)$.
- **22.b**) En déduire qu'il existe $y \in I$ tel que

$$f(x_n) - \sum_{i=1}^{n-1} f(x_i) \prod_{\substack{j=1\\j\neq i}}^{n-1} \frac{x_n - x_j}{x_i - x_j} = \frac{f^{(n-1)}(y)}{(n-1)!} \beta.$$

23) Montrer qu'il existe $(y_1, \ldots, y_n) \in \mathbf{I}^n$ tel que

$$\det A(x_1, \dots, x_n) = \frac{\beta}{(n-1)!} \cdot \det \begin{pmatrix} f_1(x_1) & \cdots & f_1(x_{n-1}) & f_1^{(n-1)}(y_1) \\ \vdots & & \vdots & \vdots \\ f_n(x_1) & \cdots & f_n(x_{n-1}) & f_n^{(n-1)}(y_n) \end{pmatrix}$$

24) Conclure la preuve du théorème 3.

Intersections atypiques : le cas transcendant

On fixe un segment non trivial $I \subset \mathbf{R}$ et une fonction transcendante $f \in \mathscr{C}^{\infty}(I, \mathbf{R})$, dont on note $\Gamma(f)$ le graphe. Pour un entier $n \geqslant 1$, on note $\frac{1}{n}\mathbf{Z}^2 = \left\{\left(\frac{x}{n}, \frac{y}{n}\right) \; ; \; x, y \in \mathbf{Z}\right\}$. On se propose de démontrer le résultat suivant :

THÉORÈME 4 Pour tout $\varepsilon > 0$, il existe un réel $c_3 > 0$ tel que, pour tout $n \ge 1$, on a

$$\left|\Gamma(f)\cap \frac{1}{n}\mathbf{Z}^2\right|\leqslant c_3\,n^{\varepsilon}.$$

On fixe pour la suite $\varepsilon > 0$ et un entier d > 1 tel que $\frac{2}{d+1} < \varepsilon$.

Pour $P = (x, y) \in \mathbb{R}^2$ on note $v^P \in \mathbb{R}^{d^2}$ le vecteur dont les coordonnées (numérotées de 1 à d^2) sont définies par la formule $v^P_{i+dj+1} = x^i y^j$ pour $1 \le i, j < d$. Par exemple, si d = 2, on a $v^P = (1, x, y, yx)$ et pour d = 3 on a $v^P = (1, x, x^2, y, yx, yx^2, y^2, y^2x, y^2x^2)$.

Intersections atypiques

Si $P_1, \ldots, P_n \in \mathbf{R}^2$ on note $B(P_1, \ldots, P_n)$ la matrice de taille $d^2 \times n$ dont les vecteurs colonnes sont v^{P_1}, \ldots, v^{P_n} .

25) Soient $n \ge 1$ et $P_1, \ldots, P_n \in \mathbf{R}^2$. Montrer qu'il existe une d-courbe contenant P_1, \ldots, P_n si et seulement si

$$\operatorname{rang}(B(P_1, \dots, P_n)) < d^2.$$

26) En utilisant le théorème 3, montrer qu'il existe un réel c > 1 tel que pour tous points $P_1 = (x_1, y_1), \dots, P_{d^2} = (x_{d^2}, y_{d^2})$ deux à deux distincts de $\Gamma(f)$ on a

$$\left| \det B(P_1, \dots, P_{d^2}) \right| \le \left(c \cdot \max_{1 \le i < j \le d^2} |x_i - x_j| \right)^{\frac{d^2(d^2 - 1)}{2}}.$$

On fixe un tel réel c pour la suite.

- 27) Soient $P_1 = (x_1, y_1), \dots, P_{d^2} = (x_{d^2}, y_{d^2})$ des points deux à deux distincts appartenant à $\Gamma(f) \cap \frac{1}{n} \mathbf{Z}^2$.
- **27.a**) Montrer que $n^{d^2(d-1)} \cdot \det B(P_1, \dots, P_{d^2})$ est un entier.
- 27.b) En déduire que, si P_1, \dots, P_{d^2} n'appartiennent pas à une même d-courbe, alors

$$\max_{1 \le i < j \le d^2} |x_i - x_j| \ge c^{-1} n^{-\frac{2}{d+1}}.$$

- 28) Soit J un segment contenu dans I et de longueur strictement inférieure à $c^{-1} n^{-\frac{2}{d+1}}$. Montrer qu'il existe une d-courbe contenant tous les points de $\Gamma(f) \cap \frac{1}{n} \mathbf{Z}^2$ dont l'abscisse appartient à J.
- 29) Finir la preuve du théorème 4.