Corrigé de la première épeuve de mathématiques.

ENSAE MP 97.

PARTIE I.

I.1) Supposons que $\mathcal{M}(\delta, F)$ soit vide. Comme F est non vide, nous pouvons choisir $x_1 \in F$ et construire par récurrence une suite (x_n) vérifiant :

$$x_{n+1} \in F \setminus \bigcup_{i=1}^{n} B(x_i, \delta)$$

pour tout entier $n \geq 1$. Comme F est bornée, la suite (x_n) l'est également. Comme \mathbb{R}^d est de dimension finie, la suite (x_n) possède au moins une valeur d'adhérence, ce qui est absurde puisque $d(x_i, x_j) \geq \delta$ dès que i et j sont distincts.

I.2.a) Comme $F \subset F'$, $\mathcal{M}(\delta, F') \subset \mathcal{M}(\delta, F)$, et donc $N(\delta, F) \leq N(\delta, F')$. Pour $\delta < 1$, nous avons donc

$$\frac{N(\delta, F)}{-\ln \delta} \le \frac{N(\delta, F')}{-\ln \delta},$$

ce qui donne l'inégalité demandée par passage à la limite.

I.2.b) Si F est contenue dans $\bigcup_{i=1}^n B(x_i, \delta)$, λF est contenue dans $\bigcup_{i=1}^n B(\lambda x_i, \lambda \delta)$. Ainsi, $N(\delta \lambda, \lambda F) \leq N(\delta, F)$. En appliquant cette inégalité en remplaçant F par λF et λ par $1/\lambda$, nous obtenons :

$$N(\delta\lambda, \lambda F) = N(\delta, F)$$

pour tout $\delta > 0$. Nous avons alors :

$$\frac{N(\delta,\lambda F)}{-\ln\delta} = \frac{N(\delta/\lambda,F)}{-\ln(\delta/\lambda)} \times \frac{\ln\delta - \ln\lambda}{\ln\delta},$$

et donc

$$\frac{N(\delta, \lambda F)}{-\ln \delta} \xrightarrow[\delta \to 0^+]{} B\text{-dim}(F).$$

 $B\text{-}\dim(\lambda F)$ existe donc et est égale à $B\text{-}\dim(F)$.

I.2.c) Quitte à échanger les rôles de F et de F', nous pouvons supposer que $\operatorname{B-dim}(F) \geq \operatorname{B-dim}(F')$. Remarquons tout d'abord la double inégalité :

$$N(\delta, F) \le N(\delta, F \cup F') \le N(\delta, F) + N(\delta, F').$$

La première inégalité a été prouvée au **2.a**). Pour la seconde, il suffit de remarquer que s'il existe n boules de rayon δ recouvrant F et n' boules de rayon δ recouvrant F', alors les n+n' boules recouvrent $F \cup F'$. Nous allons alors distinguer deux cas :

• B-dim(F) > B-dim(F').

Nous avons alors $\frac{\ln N(\delta,F)}{-\ln \delta} \ge \frac{\ln N(\delta,F')}{-\ln \delta}$, c'est à dire $N(\delta,F) \ge N(\delta,F')$, pour δ assez petit (et strictement inférieur à 1). Alors $N(\delta,F) \le N(\delta,F \cup F') \le N(\delta,F) + N(\delta,F') \le 2N(\delta,F)$, puis

$$\frac{\ln N(\delta, F)}{-\ln \delta} \le \frac{\ln N(\delta, F \cup F')}{-\ln \delta} \le \frac{\ln 2 + \ln N(\delta, F)}{-\ln \delta}$$

pour δ assez petit. Cette inégalité prouve que B-dim $(F \cup F')$ existe et est égale à B-dim(F).

• B-dim(F) = B-dim(F') = a.

Soit $\varepsilon > 0$. Fixons $\delta_0 \in]0,1[$ tel que

$$a - \varepsilon \le \frac{\ln N(\delta, F)}{-\ln \delta} \le a + \varepsilon,$$

$$a - \varepsilon \le \frac{\ln N(\delta, F')}{-\ln \delta} \le a + \varepsilon$$

pour $\delta \in]0, \delta_0[$. Nous avons alors, pour $\delta < \delta_0$:

$$e^{-(a-\varepsilon)\ln\delta} \le N(\delta, F) \le N(\delta, F \cup F') \le N(\delta, F) + N(\delta, F') \le 2e^{-(a+\varepsilon)\ln\delta}$$

soit

$$a - \varepsilon \le \frac{\ln N(\delta, F \cup F')}{-\ln \delta} \le \frac{\ln 2}{-\ln \delta} + a + \varepsilon.$$

Soit alors $\delta_0' \in]0, \delta_0]$ tel que $\frac{\ln 2}{-\ln \delta} < \varepsilon$ pour $\delta \in]0, \delta_0'[$. Nous obtenons alors :

$$a - \varepsilon \le \frac{\ln N(\delta, F \cup F')}{-\ln \delta} \le a + 2\varepsilon$$

pour tout $\delta \in]0, \delta_0'[$. Cette inégalité prouve que B-dim $(F \cup F')$ existe et est égale à a.

I.2.d) Le résultat s'obtient immédiatement en considérant la double inégalité

$$\frac{\ln N(\delta, F)}{-\ln \delta} \le \frac{\ln N(\delta, F'')}{-\ln \delta} \le \frac{\ln N(\delta, F')}{-\ln \delta},$$

valable pour tout $\delta \in]0,1[$.

I.3) Soit $F = \{x_1, \dots, x_k\}$ une partie non vide finie de \mathbb{R}^d , et soit δ_0 la plus petite distance séparant deux points distincts de F:

$$\delta_0 = \min\{||x_j - x_i||, 1 \le i < j \le k\}.$$

Nous avons $N(\delta, F) = k$ dès que $\delta < \delta_0/2$, puisqu'une boule de rayon δ (et donc de diamètre strictement inférieur à δ_0) ne peut contenir deux points de F. Nous obtenons alors :

$$\frac{\ln N(\delta, F)}{-\ln \delta} = \frac{\ln k}{-\ln \delta} \xrightarrow[\delta \to 0^+]{} 0,$$

ce qui prouve que B-dim(F) existe et que B-dim(F) = 0.

I.4.a) L'application est clairement une norme équivalente à la norme euclidienne.

I.4.b) Soit $x \in \mathbb{R}^d$ et $i \in \{1, ..., d\}$. La projection P_i de la boule $B(x, \delta)$ sur la droite $\text{Vect}(v_i)$ est un segment de longueur 2δ . Notons N_i le nombre de segments de la forme $[k\delta v_i, (k+1)\delta v_i]$ (avec k entier relatif) intersectant P_i . Comme les segments $[k\delta v_i, (k+1)\delta v_i]$ sont de longueur $\delta||v_i||$, nous avons

$$(N_i - 2)\delta||v_i|| < 2\delta,$$

l'égalité étant obtenue quand les extrémités de P_i sont chacunes de la forme $k\delta v_i$ avec $k\in\mathbb{Z}$. Nous obtenons donc une majoration de N_i :

$$N_i \le 2 + \frac{2}{||v_i||}.$$

D'autre part, si $B(x, \delta)$ rencontre $C(k_1, k_2, \ldots, k_d, \delta)$, alors $[k_i \delta, (k_i + 1) \delta] \cap P_i \neq \emptyset$ pour tout i. On en déduit donc que $B(x, \delta)$ rencontre au maximum $N_1 \times N_2 \times \ldots \times N_k \delta$ -cubes, chaque entier k_i ne pouvant prendre que N_i valeurs distinctes. Nous obtenons donc le résultat demandé avec

$$\gamma = \prod_{i=1}^{d} \left(2 + \frac{2}{||u_i||} \right).$$

I.4.c) F est recouverte par $N(\delta, F)$ boules de rayons δ . Comme chacune de ces boules rencontre au maximum γ δ -cubes, F rencontre au maximum $\gamma N(\delta, F)$ δ -cubes. Nous en déduisons la première inégalité :

$$\frac{1}{\gamma}A(\delta, F) \le N(\delta, F).$$

Deux δ -cubes C_1 et C_2 étant isométriques, nous avons $N(\delta, C_1) = N(\delta, C_2)$. Notons γ_2 cet entier, qui ne dépend que de δ et de (v_1, \ldots, v_d) . Comme F est contenu dans la réunion des $A(\delta, F)$ δ -cubes qui le rencontrent, on en déduit que F est recouvert par la réunion de $\gamma_2 A(\delta, F)$ boules ouvertes de rayon δ . On obtient ainsi la seconde inégalité :

$$N(\delta, F) \le \gamma A(\delta, F).$$

I.4.d) Le résultat est clair, les inégalités précédentes montrant que les expressions $\frac{\ln A(\delta, F)}{-\ln \delta}$ et $\frac{\ln N(\delta, F)}{-\ln \delta}$ sont équivalentes au voisinage de 0.

I.5.a) Un δ -cube $C(k_1, \ldots, k_d, \delta)$ rencontre U_{α} si et seulement si $[k_i \delta, (k_i + 1)\delta] \cap [-\alpha, \alpha]$ est non vide pour tout i compris entre 1 et p et si $0 \in [k_i \delta, (k_i + 1)\delta]$ pour tout i compris entre p + 1 et d. Pour i entier compris entre 1 et p fixé, notons N_i l'entier naturel défini par la condition :

$$|N_i\delta||v_i|| < \alpha < (N_i + 1)\delta||v_i||.$$

Il existe alors exactement $2(N_i+1)$ intervalle de la forme $[k_i\delta,(k_i+1)\delta]$ rencontrant $[-\alpha,\alpha]$. Nous en déduisons que

$$A(\delta, U_{\alpha}) = 2^{d-p} \times 2(N_1 + 1) \times 2(N_2 + 1) \dots \times 2(N_p + 1).$$

Nous obtenons ensuite (en prenant δ assez petit pour avoir $N_i \geq 1$ pour tout i):

$$2^d(\frac{\alpha}{\delta||v_1||}-1)\dots(\frac{\alpha}{\delta||v_p||}-1) \leq A(\delta,U_\alpha) \leq 2^d(\frac{\alpha}{\delta||v_1||})\dots(\frac{\alpha}{\delta||v_p||}),$$

puis

$$d\ln 2 - p\ln \delta + \ln(\alpha - \delta||v_1||) + \dots + \ln(\alpha - \delta||v_p||) \le \ln A(\delta, U_\alpha) \le d\ln 2 - p\ln \delta + p\ln \alpha.$$

Ceci prouve que $\frac{\ln A(\delta, U_{\alpha})}{-\ln \delta}$ tend vers p quand δ tend vers 0^+ . B-dim (U_{α}) est donc bien définie, et est égale à p.

I.5.b) L'équivalence des normes obtenue à la question **I.4.b)** prouve l'existence de α_1 et α_2 réels strictement positifs tels que :

$$\{\lambda_1 v_1 + \dots + \lambda_d v_d, \ \lambda_1, \dots, \lambda_d \in [-\alpha_1, \alpha_1]\} \subset B(0, R) \subset \{\lambda_1 v_1 + \dots + \lambda_d v_d, \ \lambda_1, \dots, \lambda_d \in [-\alpha_2, \alpha_2]\}.$$

Nous obtenons la relation demandée par intersection avec le sous-espace L.

I.5.c) Comme B-dim (U_{α_1}) et B-dim (U_{α_2}) existent et sont tous deux égaux à p, on sait d'après le **I.2.d.** que B-dim(B(0,R)) existe et est égale à p.

PARTIE II.

II.1.a) Nous avons $|\lambda^{(s-2)k}\sin(\lambda^k t)| \leq \lambda^{(s-2)k}$ pour tout réel t et pour tout entier $k \geq 1$. Comme la série de terme général $\lambda^{(s-2)k}$ est convergente (ce terme général est négligeable devant $1/k^2$), la série définissant f est normalement convergente sur \mathbb{R} . Ceci prouve que f est définie et continue sur \mathbb{R} , les fonctions sommées étant continues par rapport à t.

II.1.b) G est l'image du compact [0,1] par l'application continue $t \mapsto (t,f(t))$. G est ainsi une partie compacte, donc bornée, de \mathbb{R}^2 .

II.2) Soit $t \in \mathbb{R}$ et $h \in]0, 1/\lambda[$. Notons N la partie entière de $-\frac{\ln h}{\ln \lambda}$. Nous avons

$$N \ge 1, \ \lambda^{-(N+1)} < h \le \lambda^{-N}.$$

Nous pouvons alors écrire :

$$|f(t+h) - f(t)| = \left| \sum_{k=1}^{+\infty} \lambda^{-(2-s)k} \left(\sin(\lambda^k (t+h)) - \sin(\lambda^k t) \right) \right|$$

$$\leq \sum_{k=1}^{N} \lambda^{-(2-s)k} \left| \underbrace{\sin(\lambda^k (t+h)) - \sin(\lambda^k t)} \right| + \sum_{k=N+1}^{+\infty} \lambda^{-(2-s)k} \left| \underbrace{\sin(\lambda^k (t+h)) - \sin(\lambda^k t)} \right|.$$

$$\leq \lambda^k h$$

Notons A_N et B_N ces deux dernières sommes. Nous obtenons facilement les majorations de A_N et de B_N :

$$A_N \le \sum_{k=1}^N \lambda^{-(2-s)k} \lambda^k h = h \sum_{k=1}^N \lambda^{(s-1)k} = h \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} \left(\lambda^{(s-1)N} - 1 \right)$$

$$\le h \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} \left(\lambda^N \right)^{s-1} \le h \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} h^{1-s} = \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} h^{2-s}$$

$$B_N \le 2 \sum_{k=N+1}^{+\infty} \lambda^{-(2-s)k} = 2 \frac{\lambda^{-(2-s)(N+1)}}{1 - \lambda^{-(2-s)}} \le \frac{2}{1 - \lambda^{-(2-s)}} h^{2-s}$$

puisque $\lambda^N < h^{-1}$ et $\lambda^{-(N+1)} \le h$. Nous obtenons ainsi l'inégalité demandée, en posant

$$c = \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} + \frac{2\lambda^{2-s}}{\lambda^{2-s} - 1}.$$

II.3.a) Supposons qu'un tel ε n'existe pas. Pour chaque entier n, il existe donc $t_n \in \mathbb{R}$ tel que

$$|\sin(t_n+h) - \sin(t_n)| \le \frac{1}{n+1}$$

pour tout $h \in [1/2, 1[$. La fonction sinus étant de période 2π , nous pouvons supposer que $t_n \in [0, 2\pi]$ pour tout n. La suite (t_n) est alors bornée et nous pouvons en extraire une sous-suite $(t_{\psi(n)})$ qui converge vers un élément t de $[0, 2\pi]$. Fixons n_0 tel que l'on ait $|t_{\psi(n)} - t| < 1/8$ pour tout entier n au moins égal à n_0 . Nous obtenons alors

$$t_{\psi(n)} + 1/2 < t + 1/2 + 1/8 < t + 1 - 1/8 < t_{\psi(n)} + 1$$

pour tout $n \ge n_0$, ce qui permet d'affirmer que l'inégalité

$$|\sin(t+h) - \sin(t)| \le \frac{1}{\psi(n)}$$

est vérifiée dès que $n \ge n_0$ et $5/8 \le h \le 7/8$. En faisant tendre n vers l'infini, nous obtenons

$$\sin(t+h) = \sin(t)$$

pour tout h compris entre 5/8 et 7/8, ce qui est absurde.

II.3.b) Soit t, h et N tels que $0 \le t < t + h$ et $\lambda^{-(N+1)} \le h \le \lambda^{-N}$. En utilisant les mêmes majorations qu'à la question **II.2)**, nous obtenons :

$$\begin{split} \sum_{k=1}^{N-1} \lambda^{-(2-s)k} \left| \sin(\lambda^k(t+h)) - \sin(\lambda^k t) \right| &\leq \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} \left(\lambda^{(s-1)(N-1)} - 1 \right) \, h \leq \frac{\lambda^{s-1}}{\lambda^{s-1} - 1} \, \lambda^{(s-1)(N-1)} \, h \\ &\leq \frac{1}{\lambda^{s-1} - 1} \, \lambda^{N(s-1)} \, h \leq \frac{1}{\lambda^{s-1} - 1} \, \lambda^{(s-1)N} \, \lambda^{-N} \\ &\leq \frac{1}{\lambda^{s-1} - 1} \, \lambda^{N(s-2)} \end{split}$$

$$\sum_{k=N+1}^{+\infty} \lambda^{-(2-s)k} \left| \sin(\lambda^k (t+h)) - \sin(\lambda^k t) \right| \le 2 \frac{\lambda^{(s-2)(N+1)}}{1 - \lambda^{s-2}}$$

$$\le \frac{2\lambda^{s-2}}{1 - \lambda^{s-2}} \lambda^{(s-2)N}$$

Comme $\frac{1}{\lambda^{s-1}-1}$ et $\frac{2\lambda^{s-2}}{1-\lambda^{s-2}}$ tendent vers 0 quand λ tend vers $+\infty$, il existe λ_0 ne dépendant que de s et de ε tel que $\frac{1}{\lambda^{s-1}-1}+\frac{2\lambda^{s-2}}{1-\lambda^{s-2}}\leq \frac{\varepsilon}{2}$ pour tout $\lambda\geq\lambda_0$. Nous avons alors

$$\left| f(t+h) - f(t) - \lambda^{(s-2)N} \left(\sin \left(\lambda^N (t+h) \right) - \sin(\lambda^N t) \right) \right| \le \frac{\varepsilon}{2} \lambda^{(s-2)N}$$

pour tout $\lambda \geq \lambda_0$.

II.3.c) Soit $t' = \lambda^N t$. Fixons $h' \in [1/2, 1[$ tel que $|\sin(t' + h') - \sin t'| > \varepsilon$ et posons $h = \lambda^{-N} h'$. Nous avons

$$\lambda^{-(N+1)} \le \frac{1}{2\lambda^N} \le h < \frac{1}{\lambda^N}$$

puis

$$|f(t+h) - f(t)| \ge \left|\lambda^{(s-2)N} \left(\sin(t'+h') - \sin(t')\right)\right| - \left|f(t+h) - f(t) - \lambda^{(s-2)N} \left(\sin(t'+h') - \sin(t')\right)\right|$$

$$\ge \varepsilon \lambda^{(s-2)N} - \frac{\varepsilon}{2} \lambda^{(s-2)N} = \frac{\varepsilon}{2} \lambda^{(s-2)N}.$$

II.4) Soit $\delta \in]0, 1/\lambda[$. Pour tout réel t et pour tout $h \in [0, \delta]$, nous avons

$$|f(t+h) - f(t)| > ch^{2-s} < c\delta^{2-s}$$

d'après le II.2). Nous obtenons donc la première inégalité demandée, pour $\delta < 1/\lambda$, en posant

$$C_1 = c$$
.

Soit $\delta > 0$ et $t \in \mathbb{R}$. On sait d'après le **II.3.c**) qu'il existe $h \in [0, \delta[$ tel que

$$|f(t+h) - f(t)| \ge \frac{\varepsilon}{2} \lambda^{s-2} \delta^{2-s}.$$

Comme $\omega(t,t+\delta) \leq |f(t+h)-f(t)|$, on en déduit la seconde inégalité demandée en posant

$$C_2 = \frac{\varepsilon}{2} \lambda^{s-2}.$$

II.5) Pour i entier relatif, notons N_i le nombre de δ -cubes de la forme $[i\delta, i\delta + \delta] \times [j\delta, j\delta + \delta]$ qui intersectent la partie G. Tout d'abord, un tel δ -cube intersecte G si et seulement si $[i\delta, i\delta + \delta]$ intersecte [0, 1] et $[j\delta, j\delta + \delta]$ intersecte $f([i\delta, i\delta + \delta])$. La première condition impose à i d'être compris (au sens large) entre -1 et q. Comme f(0) = 0, nous avons clairement $N_{-1} = 2$. Si $q = 1/\delta$, nous aurons $N_q = 1$ ou 2 suivant l'appartenance de $\delta f(1)$ à \mathbb{Z} . Si $q > 1/\delta$, $N_q = 0$. Nous avons donc dans tous les cas :

$$N_{-1} = 2, \ 0 \le N_q \le 2.$$

Soit maintenant $i \in [0, q-1]$. Comme f est continue, l'image par f de $[i\delta, i\delta + \delta]$ est un intervalle, de diamètre $\omega(i\delta, i\delta + \delta)$. Nous pouvons donc en déduire l'encadrement :

$$(N_i - 2)\delta \le \omega(i\delta, i\delta + \delta) \le N_i\delta.$$

En effet, $f([i\delta, i\delta + \delta])$ est contenue dans la réunion de N_i intervalles de longueur δ et contient au moins N-2 de ces intervalles disjoints. Nous en déduisons donc l'encadrement de N_i :

$$\frac{1}{\delta}\omega(i\delta, i\delta + \delta) \le N_i \le 2 + \frac{1}{\delta}\omega(i\delta, i\delta + \delta).$$

Nous pouvons maintenant sommer les encadrements obtenus :

$$2 + \frac{1}{\delta} \sum_{i=0}^{q-1} \omega(i\delta, i\delta + \delta) \le \sum_{i=-1}^{q} N_i = A(\delta, G) \le 2q + 4 + \frac{1}{\delta} \sum_{i=0}^{q-1} \omega(i\delta, i\delta + \delta).$$

Cette majoration est presque celle demandée. Il y a une petite erreur d'énoncé, la majoration demandée étant fausse pour $\delta=1$.

II.6) Nous déduisons des deux questions précédentes l'encadrement :

$$\frac{q}{\delta} C_1 \delta^{2-s} \le A(\delta, G) \le 2q + 4 + \frac{q}{\delta} C_2 \delta^{2-s}$$

pour δ assez petit. Or $1/\delta \leq q < 1 + 1/\delta$, donc

$$C_1 \, \delta^{-s} \le A(\delta, G) \le \frac{2}{\delta} + 6 + 2 \, C_2 \, \delta^{-s} + C_2 \, \delta^{1-s},$$

puis

$$-s\ln\delta + \ln C_1 \le \ln A(\delta, G) \le -s\ln\delta + \underbrace{\ln(2C_2 + 2\delta^{s-1} + C_2\delta + 6\delta^s)}_{\delta \to 0^+}.$$

On en déduit que $\ln A(\delta, G)$ est équivalent à $-s \ln \delta$ au voisinage de 0, puis que B-dim(G) existe et est égale à s. Nous avons ainsi "construit" une courbe de dimension s pour s élément quelconque de]1, 2[. Il suffit en effet de calculer un ε convenable, puis de choisir λ tel que

$$\frac{1}{\lambda^{s-1}-1}+\frac{2\,\lambda^{s-2}}{1-\lambda^{s-2}}\leq \frac{\varepsilon}{2}.$$

Le graphe de l'application f définie sur [0,1] par la relation $f(t) = \sum_{k=1}^{+\infty} \lambda^{(s-2)k} \sin(\lambda^k t)$ est alors une courbe fractale de dimension s.

PARTIE III.

- III.1) Si A est une partie compacte non vide de E, l'image de A par chaque S_i est une partie compacte non vide de E (S_i est continue car lipschitzienne de rapport c_i). $\varphi(A)$ est alors une réunion finie de parties compactes non vides : c'est donc un compact non vide de E.
- III.2) On montre facilement que si A et B sont deux parties de E vérifiant $A \subset B$, alors $\varphi(A) \subset \varphi(B)$. La suite $(\varphi^k(E))$ est donc une suite décroissante, puisque $\varphi(E) \subset E$. F est alors un compact non vide comme intersection d'une suite décroissante de compacts non vides.
- Montrons que F est contenu dans $\varphi(F)$. Soit donc $x \in F$. Pour tout $n \ge 1$, choisissons $i_n \in \{1, ..., m\}$ et $y_n \in \varphi^{n-1}(E)$ tel que

$$x = S_{i_n}(y_n).$$

L'ensemble décrit par la suite (i_n) étant fini, il existe un indice i et une application $\delta: \mathbb{N} \longrightarrow \mathbb{N}^*$ strictement croissante telle que

$$i_{\delta(n)} = i$$

pour tout entier naturel n. La suite $(y_{\delta(n)})$ est alors une suite d'éléments du compact E: on peut en extraire une sous-suite convergeant dans E. Soit donc $y \in E$ et δ' : $\mathbb{N} \longrightarrow \mathbb{N}^*$ strictement croissante telle que

$$y_{\delta(\delta'(n))} \xrightarrow[n \to +\infty]{} y.$$

Pour $k \geq 1$, nous avons $y_{\delta(\delta'(n))} \in \varphi^k(E)$ pour n assez grand (la suite $\varphi^n(E)$ est décroissante). Comme $\varphi^k(E)$ est fermé, y est élément de $\varphi^k(E)$, et donc $y \in F$. D'autre part,

$$x = S_i(y_{\delta(\delta'(n))})$$

pour tout n et S_i est continue. On en déduit que $x = S_i(y)$ en passant à la limite, et donc $x \in \varphi(F)$.

• Montrons que $\varphi(F)$ est contenu dans F. Soit donc $x \in \varphi(F)$. Choisissons $i \in \{1, ..., m\}$ et $y \in F$ tel que $x = S_i(y)$. Comme $y \in \varphi^k(E)$ pour tout $k \ge 1$, $x \in \varphi^k(E)$ pour tout $k \ge 2$. Nous obtenons donc

$$x \in \bigcup_{k=2}^{+\infty} \varphi^k(E) = \bigcup_{k=1}^{+\infty} \varphi^k(E) = F.$$

III.3) Soient A et B deux compacts non vides distincts de E. On peut, quitte à échanger A et B, supposer que A ne contient pas B. Choisissons donc $y \in B \setminus A$. Soit $\mu_0 = d(y, A)$. Comme A est compact, la distance de y à A est atteinte : nous pouvons choisir x dans A tel que $\mu_0 = d(x, y) > 0$. Si μ est strictement plus petit que μ_0 , nous aurons alors

$$\mu < d(x,y) \leq d(z,y)$$

pour tout z dans A, et donc $x \notin A^{\mu}$. B ne sera donc pas inclu dans A^{μ} . La définition de d(A, B) permet alors d'affirmer que $d(A, B) \ge \mu_0 > 0$.

Réciproquement, il est clair que d(A, A) = 0 pour tout élément A de K, puisque $A \subset A^{\mu}$ pour tout $\mu > 0$.

III.4) Soient $\mu > \max_{1 \le i \le m} d(A_i, B_i)$. Nous avons alors $A_i \subset B_i^{\mu}$ et $B_i \subset A_i^{\mu}$ pour tout i¹. Nous allons montrer alors que

$$\bigcup_{i=1}^m A_i \subset \left(\bigcup_{i=1}^m B_i\right)^{\mu}.$$

On utilise ici le fait que, pour A et B compacts non vides de E, l'ensemble des μ tels que $A \subset B^{\mu}$ et $B \subset A^{\mu}$ est un intervalle.

Nous aurons alors par symétrie l'inclusion

$$\bigcup_{i=1}^{m} B_i \subset \left(\bigcup_{i=1}^{m} A_i\right)^{\mu},$$

ce qui achèvera de prouver l'inégalité demandée.

Pour cela, prenons un élément
$$x$$
 de $\bigcup_{i=1}^m A_i$. Soit i tel que $x \in A_i$. Comme $A_i \subset B_i^{\mu}$, il existe $y \in B_i$ tel que $||x-y|| \le \mu$. Mais comme $y \in \bigcup_{i=1}^m B_i$, nous avons prouvé que x était élément de $\left(\bigcup_{i=1}^m B_i\right)^{\mu}$.

III.5) Remarquons tout d'abord que si S est une application de E dans E lipschitzienne de rapport K, si A et B sont deux compacts non vides de E et si μ est un réel strictement positif tel que $A \subset B^{\mu}$, alors $S(A) \subset S(B)^{K\mu}$. En effet, si $X \in S(A)$, il existe $x \in A$ tel que S(x) = X. Mais $x \in B^{\mu}$, donc il existe $y \in B$ tel que $||x-y|| \le \mu$. On en déduit donc qu'il existe $Y = S(y) \in S(B)$ tel que

$$||X - Y|| = ||S(x) - S(y)|| \le K||x - y|| \le K\mu.$$

Cette inégalité prouve que X est élément de $S(B)^{K\mu}$.

Soient alors A et B deux compacts non vide de E. Nous déduisons de la propriété précédente que

$$d(S_i(A), S_i(B)) \le c_i d(A_i, B_i)$$

pour tout entier i compris entre 1 et m. Nous obtenons alors :

$$d(\varphi(A), \varphi(B)) = d\left(\bigcup_{i=1}^{m} S_i(A), \bigcup_{i=1}^{m} S_i(B)\right) \le \max_{1 \le i \le m} d(S_i(A), S_i(B)) \le \max_{1 \le i \le m} c_i d(A, B),$$

et donc

$$d(\varphi(A), \varphi(B)) \le M d(A, B)$$

où
$$M = \max_{1 \le i \le m} c_i \in [0, 1]^2$$
.

III.6) Si F' est un compact non vide de E vérifiant $\varphi(F') = F'$, nous avons

$$d(F, F') = d(\varphi(F), \varphi(F')) \le Md(F, F').$$

Comme M < 1, nous en déduisons que d(F, F') = 0, soit F = F'. F est ainsi le seul compact invariant par

III.7) Nous avons pour tout entier naturel k et pour tout compact non vide A de E:

$$d(\varphi^{k+1}(A), F) \le Md(\varphi^k(A), F),$$

d'où

$$d(\varphi^k(A), F) \le M^k d(A, F)$$

par récurrence évidente. Comme $M<1,\,M^k$ tend vers 0 quand k tend vers l'infini, ce qui prouve que $\varphi^k(A)$ tend vers F quand k tend vers l'infini, et ceci pour tout élément A de K (et en particulier pour A = E).

Cette relation prouve que $\varphi: \mathcal{K} \longrightarrow \mathcal{K}$ est contractante pour la distance (de Hausdorff) d. Comme \mathcal{K} est complet pour cette métrique, le théorème du point fixe s'applique : φ possède un unique point fixe F, qui est la limite de toute suite de la forme $(\varphi^k(A))_{k\geq 1}$ où A est un compact non vide de E.

III.8.a) L'application $f: s \mapsto \sum_{i=1}^m c_i^s$ est continue et strictement décroissante sur $[0, +\infty[$ $(0 < c_i < 1 \text{ pour tout } i)$. Mais f(0) = m et $f(s) \xrightarrow[s \to +\infty]{} 0$, donc f réalise une bijection de $[0, +\infty[$ sur]0, m]. Comme $0 < 1 \le m$, il existe un unique s_0 tel que $f(s_0) = 1$.

III.8.b) Comme $\delta^s N(\delta, F)$ tend vers 1 quand s tend vers 0^+ , nous avons

$$s \ln \delta + \ln N(\delta, F) \xrightarrow[s \to 0^+]{} 0.$$

Nous en déduisons que B-dim(F) existe et est égale à s.

D'autre part, les parties $S_i(E)$ étant disjointes, F est la réunion des m compacts disjoints $S_i(F)$. Soit δ_0 défini par :

$$\delta_0 = \min_{1 \le i < j \le m} \left(\min\{||x - y||, (x, y) \in S_i(F) \times S_j(F)\} \right) > 0.$$

Si δ est strictement plus petit que $\delta_0/2$, nous aurons

$$N(\delta, F) = \sum_{i=1}^{m} N(\delta, S_i(F))$$

puisqu'une boule de rayon δ (et donc de diamètre strictement inférieur à δ_0) ne peut intersecter deux ensembles $S_i(F)$ différents. Il semble alors naturel de penser³ que $N(\delta, S_i(F))$ est équivalent à $C\left(\frac{c_i}{\delta}\right)^s$ pour δ tendant vers 0. En passant à la limite dans l'égalité

$$\delta^{s} N(\delta, F) = \sum_{i=1}^{m} c_{i}^{s} \left(\frac{\delta}{c_{i}}\right)^{s} N(\delta, S_{i}(F)),$$

nous obtenons $C = C \sum_{i=1}^{m} c_i^s$, soit $s = s_0$ (la constante C est non nulle car $N(\delta, F)$ est non null).

³ Mais cela n'est pas si simple à démontrer, et je n'ai plus le courage de chercher la preuve.