Centrale MP Maths1 2016

I Si
$$\rho(A) < 1$$
, alors $\lim_{m \to +\infty} A^m = 0$

I.A - Deux exemples de normes sous-multiplicatives

I.A.1) Soit
$$A = (a_{i,j})$$
 et $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Soit $\lambda \in \mathbb{R}$. Montrons
$$\begin{cases} (i) & N(A) \in \mathbb{R}^+ \text{ (évident)} \\ (ii) & N(A) = |\lambda| \cdot N(A) \\ (iii) & N(A + B) \leqslant N(A) + N(B) \\ (iv) & N(A) = 0 \Longrightarrow A = 0 \\ (v) & N(AB) \leqslant N(A) \cdot N(B) \end{cases}$$

Pour (ii) : Si $\lambda = 0$ on a bien $N(\lambda A) = N(0) = 0 = |\lambda| \cdot N(A)$. On suppose maintenant que $\lambda \neq 0$.

Soit
$$i \in [1, n]$$
. On a $\sum_{j=1}^{n} |\lambda a_{i,j}| = |\lambda| \sum_{j=1}^{n} |a_{i,j}| \leqslant |\lambda| \max_{1 \leqslant i \leqslant n} \left(\sum_{j=1}^{n} |a_{i,j}| \right) \operatorname{donc} \sum_{j=1}^{n} |\lambda a_{i,j}| \leqslant |\lambda| \cdot \operatorname{N}(A)$

comme c'est vrai pour tout
$$i$$
, on a $N(\lambda A) = \max_{1 \leqslant i \leqslant n} \left(\sum_{j=1}^{n} |\lambda a_{i,j}| \right) \leqslant |\lambda| \cdot N(A)$

On applique alors cette inégalité à la matrice λA et au scalaire $\frac{1}{\lambda}$ ainsi $N(\frac{1}{\lambda}\lambda A) \leqslant \left|\frac{1}{\lambda}\right| \cdot N(\lambda A)$ et donc $N(\lambda A) \geqslant |\lambda| \cdot N(A)$

Les deux inégalités donnent $N(\lambda A) = |\lambda| \cdot N(A)$

Pour (iii): Soit
$$i \in [1, n]$$
. On a $\sum_{j=1}^{n} |a_{i,j} + b_{i,j}| \leq \sum_{j=1}^{n} |a_{i,j}| + \sum_{j=1}^{n} |b_{i,j}| \leq N(A) + N(B)$

donc $N(A + B) \leq N(A) + N(B)$

Pour (iv): On suppose que N(A) = 0

Soit $i \in [1, n]$. On a donc $\sum_{j=1}^{n} |a_{i,j}| = 0$ (somme de réels positifs) donc pour tout $j \in [1, n]$, on a $a_{i,j} = 0$

donc A = 0

Pour (v): On note $AB = (c_{i,j})$

Soit
$$i, j \in [1, n]$$
. On a $|c_{i,j}| = \left| \sum_{k=1}^{n} a_{i,k} b_{k,j} \right| \le \sum_{k=1}^{n} |a_{i,k}| \cdot |b_{k,j}|$

donc
$$\sum_{j=1}^{n} |c_{i,j}| \leqslant \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n}} |a_{i,k}| \cdot |b_{k,j}| = \sum_{k=1}^{n} |a_{i,k}| \left(\sum_{j=1}^{n} |b_{k,j}|\right) \leqslant \sum_{k=1}^{n} |a_{i,k}| \cdot N(B) \leqslant N(A)N(B)$$

On a montré que l'application $A \mapsto N(A)$ est une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{K})$

$$\mathbf{I.A.2)} \text{ Soit } \mathbf{A} = (a_{i,j}) \text{ et } \mathbf{B} = (b_{i,j}) \in \mathcal{M}_n(\mathbb{K}). \text{ Soit } \lambda \in \mathbb{R}. \text{ Montrons} \begin{cases} (i) & \|\mathbf{A}\| \in \mathbb{R}^+ \\ (ii) & \|\lambda \mathbf{A}\| = |\lambda| \cdot \|\mathbf{A}\| \\ (iii) & \|\mathbf{A} + \mathbf{B}\| \leqslant \|\mathbf{A}\| + \|\mathbf{B}\| \\ (iv) & \|\mathbf{A}\| = 0 \Longrightarrow \mathbf{A} = 0 \\ (v) & \|\mathbf{A}\mathbf{B}\| \leqslant \|\mathbf{A}\| \cdot \|\mathbf{B}\| \end{cases}$$

Le (i) découle du (i) pour N et du fait que l'application $\psi : M \in \mathcal{M}_n(\mathbb{K}) \mapsto Q^{-1}AQ \in \mathcal{M}_n(\mathbb{K})$ est définie.

Le (ii) et (iii) découlent respectivement de (ii) et (iii) pour N et du fait que l'application ψ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$

Le (iv) découle de (iv) pour N et du fait que l'application ψ est un automorphisme de $\mathcal{M}_n(\mathbb{K})$

Le (v) découle de (v) pour N et du fait que l'application ψ est un morphisme d'algèbre

On a montré que l'application $A \mapsto ||A||$ est une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{K})$

I.B - Une conséquence de l'inégalité $\rho(A) < 1$

I.B.1) On écrit
$$T = (t_{i,j})_{1 \leq i,j \leq n}$$
 On a alors $T\Delta = (t_{i,j}\delta^{j-1})_{1 \leq i,j \leq n}$

et comme
$$\Delta^{-1} = \operatorname{diag}(1, 1/\delta, \dots, 1/\delta^{n-1})$$
, on a alors $\hat{T} = \Delta^{-1}T\Delta = (t_{i,j}\delta^{j-1}/\delta^{i-1})_{1\leqslant i,j\leqslant n}$.

Ainsi
$$\widehat{\mathbf{T}} = (t_{i,j}\delta^{j-i})_{1 \leqslant i,j \leqslant n}$$

Comme T est triangulaire supérieur, si i > j on a $t_{i,j} = 0$ donc \widehat{T} est triangulaire supérieure Soit $i \in [1, n]$.

Comme A et T sont semblable, on a $Sp(A) = Sp(T) = \{t_{k,k} / 1 \le k \le n\}$ ainsi $|t_{i,i}| < 1$

On a
$$\sum_{j=1}^{n} |t_{i,j}\delta^{j-i}| = |t_{i,i}| + \sum_{j=i+1}^{n} |t_{i,j}\delta^{j-i}|$$
 car \widehat{T} est triangulaire supérieure

On a
$$\lim_{\delta \to 0} \sum_{j=i+1}^{n} |t_{i,j}\delta^{j-i}| = 0$$
 (somme finie éventuellement vide) donc $\lim_{\delta \to 0} \sum_{j=1}^{n} |t_{i,j}\delta^{j-i}| = |t_{i,i}| \in [0,1[$

ceci nous fournit
$$\alpha_i > 0$$
, tel que $\forall \delta > 0$, $\delta \leqslant \alpha_i \Rightarrow \sum_{j=1}^n |t_{i,j}\delta^{j-i}| \leqslant \frac{|t_{i,i}|+1}{2} < 1$ car $|t_{i,i}| < \frac{|t_{i,i}|+1}{2} < 1$

En choisissant
$$\delta = \min_{1 \leq i \leq n} \alpha_i$$
, on obtient $\forall i \in [1, n], \sum_{j=1}^n |t_{i,j}\delta^{j-i}| < 1$

On a montré qu'on peut choisir δ de sorte que $N(\widehat{T}) < 1$

I.B.2) On remarque au préalable que A est trigonalisable car son polynôme caractéristique $\chi_A(X)$ est scindé dans $\mathbb{C}[X]$ d'après d'Alembert-Gauss. Ceci justifie l'existence de matrices P et T introduites en **I.B.1**) et donc celles de Q et δ .

On a
$$\|A\| = N((P\Delta)^{-1}AP\Delta) = N(\Delta^{-1}P^{-1}AP\Delta) = N(\Delta^{-1}T\Delta) = N(\widehat{T})$$
 Ainsi $\|A\| < 1$ comme $\| \|$ est sous-multiplicative d'après I.A.2, on a par récurrence immédiate $0 \le \|A^m\| \le \|A\|^m$ donc par théorème d'encadrement $\lim_{m \to +\infty} \|A^m\| = 0$

on en déduit $\lim_{m\to+\infty} A^m = 0$ car en dimension finie, la convergence ne dépend pas du choix de la norme

II Chemins dans les matrices positives

II.A - Réduction d'un chemin à un chemin élémentaire

On suppose qu'il existe dans A un chemin de i vers j où $i \neq j$.

On note E l'ensemble des longueurs des chemins dans A de i vers j.

L'ensemble E est donc une partie non vide de \mathbb{N} , il admet donc un plus petit élément ℓ .

Notons $i = i_0 \to \cdots \to i_k \to \cdots \to i_\ell = j$ un chemin de longueur minimale, ℓ

Par l'absurde si ce chemin n'était pas élémentaire il existerait $0 \le k < k' \le \ell$, tels que $i_k = i_{k'}$

Ainsi on aurait un autre chemin $i=i_0\to\cdots\to i_k\to i_{k'+1}\to\cdots\to i_\ell=j$ qui va de i vers j de longueur $\ell-(k'-k)$ car on a enlevé les indices de k+1 à k'

donc $\ell - (k' - k) \in E$ et $\ell - (k' - k) < \min E$ Absurde

Ainsi s'il existe dans A un chemin de i vers j, avec $i \neq j$, alors il existe un chemin élémentaire de i vers j

et comme l'application : $k \in [0,\ell] \mapsto i_k \in [1,n]$ est injective : la longueur ℓ de ce chemin vérifie $\ell \leqslant n-1$

On fait de même pour les chemins (i_k) allant de i vers i mais en utilisant l'injectivité de $k \in [0, \ell-1] \mapsto i_k$

s'il existe dans A un circuit passant i, alors il existe un circuit élémentaire passant par i et de longueur $\ell \leqslant n$

Preuve algorithmique: J'ai souvent vu une preuve algorithmique mais celle-ci manquait du variant de boucle qui permettait de justifier la terminaison de l'algorithme.

On considère un chemin $i = i_0 \to \cdots \to i_k \to \cdots \to i_\ell = j$ allant de i vers j de longueur $\ell \in \mathbb{N}^*$.

Si ce chemin est élémentaire il n'y a plus rien à faire, sinon il existe k < k' dans $[0, \ell]$ tel que $i_k = i_{k'}$.

Je considère alors le chemin : $i=i_0\to\cdots\to i_{k-1}\to i_k=i_{k'}\to i_{k'+1}\to\cdots\to i_\ell=j$

Ce chemin va de i vers j de longueur $\ell - (k' - k) < \ell$.

On réitère le procédé tant que le nouveau chemin allant de i vers j n'est pas élémentaire.

À chaque étape le nouveau chemin va bien de i vers j (invariant de boucle). De plus la suite des longueurs (variant de boucle) des chemins est à valeurs dans \mathbb{N}^* et est strictement décroissante. Le processus s'arrête. Le dernier chemin obtenu est nécessairement élémentaire et va de i vers j. Ce qui permet de conclure.

II.B - Une caractérisation de l'existence d'un chemin de i à j

Soit $A \geqslant 0$ dans $\mathcal{M}_n(\mathbb{R})$.

Pour $m \ge 1$. Montrons par récurrence l'équivalence demandée pour tout i, j dans [1, n], que je note \mathcal{P}_m . Initialisation : Soit i, j dans [1, n].

On a l'équivalence entre les trois propositions :

- il existe dans A un chemin d'origine i, d'extrémité j, de longueur 1;
- $a_{i,j} > 0$
- le coefficient d'indice i, j de A¹ (noté $a_{i,j}^{(1)}$) est strictement positif.

Ainsi \mathcal{P}_1 est vraie

<u>Hérédité</u>: Soit $m \in \mathbb{N}^*$ tel que \mathcal{P}_m . Montrons \mathcal{P}_{m+1} .

Soit i, j dans [1, n]

 \Rightarrow On suppose qu'il existe dans A un chemin d'origine i, d'extrémité j, de longueur m+1.

Notons $i = i_0 \to \cdots \to i_{m+1} = j$ ce chemin et $q = i_m$

En utilisant l'hypothèse de récurrence on a $a_{i,q}^{(m)}>0$ par hypothèse de récurrence appliqué à i et q

or
$$a_{i,j}^{(m+1)} = \sum_{k=1}^{n} a_{i,k}^{(m)} a_{k,j} = a_{i,q}^{(m)} a_{q,j} + \sum_{\substack{1 \leqslant k \leqslant n \\ k \neq q}} a_{i,k}^{(m)} a_{k,j} \text{ et } \sum_{\substack{1 \leqslant k \leqslant n \\ k \neq q}} a_{i,k}^{(m)} a_{k,j} \geqslant 0 \text{ car } \forall p \geqslant 1, A^p \geqslant 0$$

et $a_{q,j}>0$ à cause du chemin $i=i_0\to\cdots\to i_m=q\to i_{m+1}=j$ ce qui prouve que $a_{i,j}^{(m+1)}>0$

 \Leftarrow On suppose que $a_{i,j}^{(m+1)} > 0$.

On a donc
$$\sum_{k=1}^n a_{i,k}^{(m)} a_{k,j} > 0$$
 ceci nous fournit $q \in [1,n]$ tel que $a_{i,q}^{(m)} a_{q,j} > 0$

Comme les coefficients sont tous positifs, alors $a_{i,q}^{(m)} > 0$ et $a_{q,j} > 0$

 \mathcal{P}_m nous fournit un chemin de longueur m dans $\mathbf{A}: i=i_0 \to \cdots \to i_m=q$

donc $i = i_0 \rightarrow \cdots \rightarrow i_m = q \rightarrow j$ est un chemin de longueur m+1 dans A allant de i à j

Conclusion : On a bien montré par récurrence l'équivalence des propositions :

- | il existe dans A un chemin d'origine i, d'extrémité j, de longueur m;
- le coefficient d'indice i,j de \mathbf{A}^m (noté $a_{i,j}^{(m)}$) est strictement positif.

II. C - Chemins dans une puissance de A

On désigne par $\left(a^{(m)}\right)_{i,j}^{(\ell)}$ le terme général de la matrice $(\mathbf{A}^m)^\ell$

En remarquant que $(A^m)^\ell = A^{m\ell}$ et à l'aide de la question précédente :

On a alors l'équivalence entre :

- İl existe dans \mathbf{A}^m un chemin d'origine i, d'extrémité j, de longueur $\ell\,;$
- $(a^{(m)})_{i,j}^{(\ell)} > 0$
- $-a_{i,j}^{(m\ell)} > 0$
- İl existe dans A un chemin d'origine i, d'extrémité j, de longueur $m\ell.$

III Matrices primitives et indice de primitivité

III.A - Chemins élémentaires dans une matrice primitive

Soit $i \neq j$. Soit $m \geqslant 1$ tel que $A^m > 0$. Ainsi **II.B** nous fournit un chemin dans A de i vers j

donc II.A nous fournit alors dans A un chemin élémentaire de i à j et de longueur $\ell \leqslant n-1$

et de manière analogue il existe dans A un circuit élémentaire passant par i et de longueur $\ell \leqslant n$

III.B - Puissances d'une matrice primitive

III.B.1) Je prends $A \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients valent 1 sauf $[A]_{1,1} = 0$

Les coefficients de la première ligne ou de la première colonne de A² valent n-1>0 les autres valent n>0

A est un exemple simple d'une matrice carrée primitive mais non strictement positive

III.B.2) Par l'absurde on suppose que l'on n'a pas Bx > 0.

donc il existe $i \in [1, n]$ tel que $\sum_{j=1}^{n} [B]_{i,j} x_j = 0$ (somme de termes positifs) donc $\forall j \in [1, n]$, $[B]_{i,j} x_j = 0$ donc $\forall j \in [1, n]$, $x_j = 0$ car B > 0

donc x = 0 Absurde

si B > 0 dans $\mathcal{M}_n(\mathbb{R})$ et $x \ge 0$ dans \mathbb{R}^n avec $x \ne 0$ alors Bx > 0

III.B.3) On va montrer par récurrence que pour tout $p \ge m : A^p > 0$

Initialisation : évidente pour p = m

Hérédité : Soit $p \ge m$ tel que $A^p > 0$. Montrons $A^{p+1} > 0$

Par l'absurde si on n'avait pas $A^{p+1} > 0$

On note c_1, c_2, \ldots, c_n les colonnes de A de sortte que les colonnes de $A^{p+1} = A^p A$ sont $A^p c_1, A^p c_2, \ldots, A^p c_n$

donc il existerait j tel que $A^p c_j$ ne vérifie pas $A^p c_j > 0$ or $A^p > 0$ et $c_j \ge 0$

donc par contraposition de la question précédente $c_i = 0$

On a donc $Ae_i = 0$ où $(e_i)_{1 \le i \le n}$ désigne la base canonique de \mathbb{R}^n

d'où $A^p e_i = 0$ or $A^p > 0$ et $e_i \ge 0$ et $e_i \ne 0$

ce qui est en contradiction avec le résultat de la question précédente.

Conclusion: Si $A^m > 0$ alors $\forall p \ge m, A^p > 0$

III.B.4) On suppose A primitive et on prend $m \ge 1$ tel que $A^m > 0$

Pour $k \ge 1$, on a donc $(A^k)^m = A^{km} > 0$ car $km \ge m$ et à l'aide de la question précédente

si A est primitive, alors A^k est primitive pour tout $k \ge 1$

 $\overline{\text{III.B.5}}$) Par l'absurde, on suppose qu'il existe une matrice A primitive d'indice m dont le rayon spectral est nul. Le polynôme caractéristique de A noté χ_A est scindé sur $\mathbb{C}[X]$ d'après d'Alembert-Gauss et $\mathrm{Sp}(A) = \{0\}$ donc $\chi_{\rm A} = {\rm X}^n \ {\rm donc} \ {\rm A}^n = 0 \ {\rm D'après} \ {\rm Cayley-Hamilton}$

Ainsi $A^{m+n} = 0$ et $A^{m+n} > 0$ d'après **III.B.3** Absurde

ainsi | le rayon spectral d'une matrice primitive est strictement positif

III.C - La matrice de Weilandt

III.C.1) On a
$$W_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \chi_{W_2} = X^2 - tr(W_2)X + det(W_2) = X^2 - X - 1$$
 on a vérifié le résultat pour $n = 2$

III.C.1) On a $W_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \chi_{W_2} = X^2 - \text{tr}(W_2)X + \text{det}(W_2) = X^2 - X - 1$ on a vérifié le résultat pour n = 2 et $\chi_{W_3} = \begin{vmatrix} X & -1 & 0 \\ 0 & X & 1 \\ 1 & 1 & X \end{vmatrix} = X^3 - X - 1$ avec Sarus (Argh!). Si n > 3, on développe selon la dernière colonne :

$$\chi_{W_n} = \begin{vmatrix} X & -1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \ddots & -1 \\ -1 & -1 & 0 & \cdots & 0 & X \end{vmatrix}_{[n]} = X^n + \begin{vmatrix} X & -1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & X & -1 \\ -1 & -1 & 0 & \cdots & \cdots & 0 \end{vmatrix}_{[n-1]}$$

or en développant selon la dernière colonne, pour p > 3, on a :

$$\begin{vmatrix} X & -1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & X & -1 \\ -1 & -1 & 0 & \cdots & \cdots & 0 \end{vmatrix}_{[p]} = + \begin{vmatrix} X & -1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & X & -1 \\ -1 & -1 & 0 & \cdots & \cdots & 0 \end{vmatrix}_{[p-1]} = \begin{vmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots \\ 0$$

Ainsi le polynôme caractéristique de W_n est $X^n - X - 1$

En appliquant Cayley-Hamilton, on a $W_n^n = W_n + I_n$ donc $W_n^{n^2-2n+1} = W_n (W_n^n)^{n-2} = W_n (W_n + I_n)^{n-2}$

Comme I_n et W_n commutent : on a $W_n^{n^2-2n+1} = W_n \sum_{k=0}^{n-2} {n-2 \choose k} W_n^k I_n^{n-2-k}$

Après développement et changement d'indice : $W_n^{n^2-2n+1} = \sum_{k=1}^{n-1} \binom{n-2}{k-1} W_n^k$

Puis
$$W_n^{n^2-2n+2} = W_n \sum_{k=1}^{n-1} {n-2 \choose k-1} W_n^k = {n-2 \choose n-2} W_n^n + \sum_{k=1}^{n-2} {n-2 \choose k-1} W_n^{k+1}$$

À nouveau avec Cayley-Hamilton et changement d'indice :
$$W_n^{n^2-2n+2} = I_n + W_n + \sum_{k=2}^{n-1} \binom{n-2}{k-2} W_n^k$$

III.C.2)

Méthode algébrique : En reprenant (e_i) la base canonique de \mathbb{R}^n

On a $W_n e_1 = e_n$ et pour $i \geqslant 3$ $W_n e_i = e_{i-1}$

donc pour $k \in [1, n-1]$, on a $W_n^k e_1 = e_{n-k+1}$

ainsi pour $k \in [1, n-1]$, on a $[W_n^k]_{1,1} = 0$ et $[W_n^n]_{1,1} = [W_n]_{1,1} + [I_n]_{1,1} = 1$

donc d'après $\mathbf{H.B}$, le plus court circuit passant par l'indice 1 dans la matrice \mathbf{W}_n est de longueur n

et à l'aide de la matrice W_n : le plus court circuit passant par l'indice 1 est : $1 \to 2 \to 3 \to \cdots (n-1) \to n \to 1$

Méthode visuelle : Pour $i \in [1, n-1]$, le seul coefficient non nul sur la i-ème ligne de W_n est $[W_n]_{i,i+1} = 1 > 0$ ainsi il n'y a qu'un seul chemin de longueur de longueur 1 partant de $i:i\to i+1$

Par conséquent, il n'y a qu'un seul chemin partant de 1 de longueur $n-1:1\to 2\to 3\to \cdots (n-1)\to n$.

Ce qui prouve qu'il n'y a pas de circuit passant par l'indice 1 de longueur $\leq n-1$.

On retrouve donc la même longueur minimale pour un circuit passant par 1.

Ainsi d'après les calculs de la question précédente : $\left[\mathbf{W}_n^{n^2-2n+1}\right]_{1,1} = \sum_{k=1}^{n-1} \binom{n-2}{k-1} \left[\mathbf{W}_n^k\right]_{1,1} = 0$

 $\mathbf{W}_n^{n^2-2n+1}$ n'est pas strictement positive donc

III.C.3) En utilisant le circuit de longueur n dans $W_n: 1 \to 2 \to \cdots \to (n-1) \to n \to 1$, on voit qu'il existe un chemin qui va de i vers j pour tous $i \neq j$ dans [1, n]

En utilisant II.A, il existe bien un chemin d'origine i, d'extrémité j, et de longueur inférieure ou égale à n-1

Pour tous $i \neq j$ dans $[\![1,n]\!]$, il existe alors $k \in [\![1,n-1]\!]$, $[\![\mathbf{W}_n^k]\!]_{i,j} > 0$ d'après $\mathbf{H.B}$, de plus $\forall p \in \mathbb{N}, \mathbf{W}_n^p \geqslant 0$

donc
$$\left[\mathbf{W}_n^{n^2 - 2n + 2} \right]_{i,j} = \left[\mathbf{I}_n \right]_{i,j} + \left[\mathbf{W}_n \right]_{i,j} + \sum_{k=2}^{n-1} \binom{n-2}{k-2} \left[\mathbf{W}_n^k \right]_{i,j} > 0$$

et pour $i \in [1, n]$, on a $[I_n]_{i,i} = 1 > 0$ et donc $\left[W_n^{n^2 - 2n + 2}\right]_{i,i} > 0$

donc pour tous i, j dans [1, n], $\left[\mathbf{W}_n^{n^2-2n+2}\right]_{i,j} > 0$ On en déduit que la matrice $\mathbf{W}_n^{n^2-2n+2}$ est strictement positive comme la matrice $\mathbf{W}_n^{n^2-2n+1}$ n'est pas strictement positive, on peut conclure que W_n est primitive, d'indice de primitivité $n^2 - 2n + 2$

III.D - Indice de primitivité maximum

III.D.1) Par l'absurde, on suppose $\ell = n$.

Montrons par l'absurde qu'alors tous les circuits de A sont de longueur multiple de n

On suppose qu'il existe un circuit dans A dont la longueur ne soit pas multiple de n

On considère un tel circuit de longueur minimale $r: i_0 \to \cdots \to i_r = i_0$

On a donc $r \ge n$ et r n'est pas un multiple de n ainsi r > n il existe alors k < k' tel que $i_k = i_{k'}$

on extrait alors deux circuits $i_k \to i_{k+1} \to \cdots \to i_{k'} = i_k$ et $i_0 \to \cdots \to i_{k-1} \to i_k = i_{k'} \to i_{k'+1} \cdots \to i_r = i_0$

La somme des longueurs est r donc l'un d'entre eux a sa longueur qui n'est pas multiple de n

Ceci est en contradiction avec le caractère minimal de r

Ainsi | tous les circuits de A sont de longueur multiple de n.

Pour tout $k \in \mathbb{N}$, il n'y a pas de circuit de longueur kn+1

Ainsi d'après II.B les matrices A^{kn+1} (avec $k \in \mathbb{N}$) sont de diagonale nulle

mais pour $p \ge m$ on a $A^p > 0$ où m est l'indice de primitivité en prenant k = m, on aboutit à une contradiction III.D.2)

a) Si $1 \le i \le \ell$, On utilise le circuit $i \to (i+1) \to \cdots \to \ell \to 1 \to \cdots \to i-1 \to i$ en le répétant si nécessaire, on obtient des chemins de longueur aussi grande que l'on veut, dont les sommets sont tous dans $[1,\ell]$

En s'arrêtant au bout de $n-\ell$ pas, on obtient un chemin d'origine i, de longueur $n-\ell$ et passant uniquement par des sommets dans $\{1, 2, \dots, \ell\}$, il en est donc de même pour son extrémité

Si $\ell+1 \leq i \leq n$, comme A est primitive il existe un chemin d'origine i et d'extrémité 1

Ceci nous fournit un chemin élémentaire d'origine i et d'extrémité $1: i=i_0 \to \cdots i_m=1$

On considère $r = \min \{k \in [1, m] / 1 \le i_k \le \ell\}$ d'après II.A

comme le chemin est élémentaire ; alors $r \leq n - \ell$

On considère le chemin $i'_0 = i_r \to \cdots i'_{m'}$ tel que $1 \leqslant i'_{m'} \leqslant \ell$ et $m' = n - \ell - r$ (construit comme dans le cas précédent) on a donc $i = i_0 \to \cdots i_r = i'_0 \to i'_1 \cdots i'_{m'}$ d'origine i, de longueur $n - \ell$ et son extrémité est dans $\{1, 2, \dots, \ell\}$ En conclusion : dans les deux cas

Dans A, on peut former un chemin d'origine i, de longueur $n-\ell$, et dont l'extrémité est dans $\{1,2,\ldots,\ell\}$ b) Soit $i \in [1, \ell]$.

On utilise le circuit $1 \to 2 \to \ldots \to \ell - 1 \to \ell \to 1$ qui nous donne un circuit de longueur ℓ passant par i.

En particulier il existe dans A un chemin de longueur ℓ d'origine k et d'extrémité k.

les ℓ premiers coefficients diagonaux de A^{ℓ} (et en particulier le k-ième) sont strictement positifs

On sait que A^{ℓ} est primitive d'après III.B.4

donc il existe un chemin dans \mathbf{A}^ℓ de k à j de longueur $\lambda\leqslant n-1$ d'après **III.A**

On commence par le chemin dans $\mathbf{A}^{\ell}: \underbrace{k \to k}_{n-1-\lambda \text{ fois}}$

$$n-1-\lambda$$
 fois

cette concaténation de chemins est $\Big|$ un chemin dans \mathbf{A}^ℓ d'origine k d'extrémité j de longueur n-1Ainsi il existe un chemin de longueur $\ell(n-1)$ d'origine k et d'extrémité j.

c) On concatène les chemins fournis par a) et b) pour obtenir dans A un chemin d'origine i, d'extrémité j et de longueur $n + \ell(n-2)$.

Comme c'est valable pour tous $i, j \in [1, n]$, on en déduit finalement $A^{n+\ell(n-2)} > 0$ On a $\ell \le n-1$ donc $n+\ell(n-2) \le n+(n-1)(n-2) \le n^2-2n+2$ car $n \ge 2$ $A^{n^2-2n+2} > 0$ d'après **III.B.3**

IV Étude des puissances d'une matrice primitive

IV.A - Puissances de la matrice <math>B = A - rL

IV.A.1) Soit $(x_0, y_0) \in \Delta \times H$. On peut trouver $z \in \mathbb{R}^n$ tel que $y_0 = (A - rI_n)z$. On a

$$(x_0|y_0) = (x_0|(A - rI_n)z) = x_0^{\top}(A - rI_n)z = x_0^{\top}(A^{\top} - rI_n)^{\top}z = [(A^{\top} - rI_n)x_0]^{\top}z = 0z = 0$$

donc $x_0 \perp y_0$. On a ainsi établi : H $\perp \Delta$. D'où H $\subset \Delta^{\perp}$ or le théorème du rang nous donne

$$\dim \mathbf{H} = \operatorname{rg}(\mathbf{A} - r\mathbf{I}_n) = \operatorname{rg}(\mathbf{A}^\top - r\mathbf{I}_n) = \dim(\mathbb{R}^n) - \dim(\operatorname{Ker}(\mathbf{A}^\top - r\mathbf{I}_n)) = n - \dim\Delta = \dim(\Delta^\perp)$$

ainsi H est l'hyperplan orthogonal à la droite Δ (c'est-à-dire $H = \Delta^{\perp}$)

IV.A.2) Soit $u \in H$. On a $Lu = xy^{\top}u = x(y|u) = 0$ car $H \perp \Delta$. On a identifie dans les calculs : \mathbb{R} et $\mathcal{M}_1(\mathbb{R})$.

Soit $v \in D$. On peut trouver $\mu \in \mathbb{R}$ tel que $v = \mu x$ donc $Lv = xy^{\top}(\mu x) = \mu x(y^{\top}x) = \mu x = v$

donc $H \subset Ker(L)$ et $D \subset Ker(L - I_n)$ ce qui prouve que $H \cap D = \{0\}$ (sous espaces propres en somme directe) or d'après le théorème du rang $\dim H + \dim D = n$

donc $\mathbb{R}^n = H \oplus D$ et $H = \ker(L)$ et $D = \ker(L - I_n)$. Ainsi

L est la matrice, dans la base canonique, de la projection de \mathbb{R}^n sur la droite D, parallèlement à l'hyperplan H

IV.A.3) On a alors Im L = D et D est une droite donc L est de rang 1

On a $L = (x_i y_j)_{1 \le i,j \le n}$ et pour tout i et j, on a $x_i > 0$ et $y_j > 0$ donc L > 0

 $\mathbf{L}^{\top} y = (yx^{\top})y = y(x^{\top}y) = 1y = y \text{ donc } \mathbf{L}^{\top} y = y.$

IV.A.4) On a AL = $A(xy^{\top}) = (Ax)y^{\top} = (rx)y^{\top} = rL$

et $LA = (xy^{\top})A = x(^{\top}A^{\top}y) = x(^{\top}ry) = r(xy^{\top})$

donc |AL = LA = rL|

Par récurrence : Initialisation : on a $(A - rL)^1 = A^1 - r^1L$

<u>Hérédité</u>: Soit $m \in \mathbb{N}^*$ tel que $(A - rL)^m = A^m - r^mL$

On a $(A - rL)^{m+1} = (A - rL)(A^m - r^mL) = A^{m+1} - r^mAL - rLA^m + r^{m+1}L^2 = A^{m+1} - r^{m+1}L - rLA^m + r^{m+1}L^2$ donc $(A - rL)^{m+1} = A^{m+1} - r^{m+1}L - rLA^m + r^{m+1}L = A^{m+1} - rLA^m$

Par récurrence immédiate on a $LA^m = r^mL$ ce qui permet de conclure que $(A - rL)^{m+1} = A^{m+1} - r^{m+1}L$

Conclusion On a montré par récurrence : $\forall m \in \mathbb{N}^*, (A - rL)^m = A^m - r^mL$

$IV.B - La \ matrice \ B = A - rL \ v\'{e}rifie \ \rho(B) < r$

IV.B.1) On a $z = \frac{1}{4}Bz$ d'après l'énoncé

donc $Lz = \frac{1}{\lambda}L(A - rL)Z$ or $L(A - rL) = LA - rL^2 = rL - rL = 0$ d'après **A**

ainsi $\left| Lz = \overline{0, \text{ puis } Az = \lambda z} \right| \text{car } (A - rL)z = \lambda z$

Ainsi $\operatorname{Sp}(B) \setminus \{0\} \subset \operatorname{Sp}(A)$ donc $\forall \lambda \in \operatorname{Sp}(B), |\lambda| \leq \rho(A)$. On en déduit $|\rho(B)| \leq r$.

IV.B.2) Par l'absurde, on choisit $\lambda \in \operatorname{Sp}(B)$ de telle sorte que $|\lambda| = r$.

Avec les notations et résultats de la questions précédentes, on a $Az = \lambda z$

En utilisant le résultat admis qui affirme : $\forall \mu \in \operatorname{Sp}(A), |\mu| < r \text{ ou } \mu = r \text{ on obtient } : |\lambda = r|$

donc Az = rz donc $z \in D$ donc Lz = z d'après IV.A.2

donc z = 0 ce qui aboutit à une contradiction car z est un vecteur propre

On vient de montrer par l'absurde que $\rho(B) \neq r$ or $\rho(B) \leqslant r$ d'après la question précédente

donc on peut conclure $\rho(B) < r$

$$\begin{split} \mathbf{IV.B.3}) \text{ On a } \left(\frac{1}{r}\mathbf{A}\right)^m &= \mathbf{L} + \left(\frac{1}{r}\mathbf{B}\right)^m \text{ d'après } \mathbf{IV.A.4} \\ \text{or } \mathrm{Sp}\left(\frac{1}{r}\mathbf{B}\right) &= \left\{\frac{\lambda}{r} \, / \, \lambda \in \mathrm{Sp}(\mathbf{B})\right\} \text{ et } \forall \lambda \in \mathrm{Sp}(\mathbf{B}), |\lambda| < r \text{ donc } \forall \lambda \in \mathrm{Sp}\left(\frac{1}{r}\mathbf{B}\right), |\lambda| < 1 \\ \mathrm{Ainsi} \left(\frac{1}{r}\mathbf{B}\right)^m &\underset{m \to +\infty}{\longrightarrow} 0 \text{ d'après la partie } \mathbf{I} \text{ d'où } \left[\lim_{m \to +\infty} \left(\frac{1}{r}\mathbf{A}\right)^m = \mathbf{L}.\right] \end{split}$$

IV.C - Le rayon spectral de A est une valeur propre simple

On commence par remarquer que $\left(\frac{1}{r}\mathbf{T}\right)^m\underset{m\to+\infty}{\longrightarrow}\mathbf{P}^{-1}\mathbf{LP}$ car $\mathbf{X}\mapsto\mathbf{P}^{-1}\mathbf{XP}$ est continue (linéaire en dimension finie)

donc $\lim_{m\to +\infty} \left(\frac{1}{r}\mathbf{T}\right)^m$ est une matrice de rang 1 La diagonale de \mathbf{T} est composée des valeurs propres de \mathbf{A} comptées avec multiplicités

donc la diagonale de $\frac{1}{2}$ T est composée de complexes de modules strictement inférieur à 1 et de 1 dont le nombre d'occurrences est μ

En regardant la limite coefficients par coefficients : $P^{-1}LP = \lim_{m \to +\infty} \left(\frac{1}{r}T\right)^m$ est une matrice triangulaire où n'apparaît sur sa diagonale uniquement que des 0 et μ occurrences donc $\mu \leq \operatorname{rg}(P^{-1}LP) = \operatorname{rg}(L) = 1$ ainsi $\mu = 1$

V Matrices carrées positives irréductibles

V.A - Premières propriétés des matrices irréductibles

V.A.1)

A est irréductible si et seulement si pour tous $1 \le i, j \le n$, il existe dans A un chemin d'origine i et d'extrémité j

V.A.2) On suppose que A est irréductible. Soit i et j dans [1, n].

Si $i \neq j$, d'après la question précédente et **II.A**, il existe un chemin de longueur $1 \leqslant m \leqslant n-1$ de i à jdonc selon **II.B**, on a $a_{i,i}^{(m)} > 0$

Si i = j, on a $1 = [I_n]_{i,i} = [A^0]_{i,i} = a_{i,i}^{(0)}$

si A est irréductible, alors pour tous i et j dans [1, n], il existe $m \in [0, n-1]$ tel que $a_{i,j}^{(m)} > 0$

 $\overline{\mathbf{V.A.3}}$) On prend $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Pour tout $m \in \mathbb{N}$, $J^m = J$ ou $J = I_2$

J est un exemple simple d'une matrice carrée irréductible mais non primitive

V.A.4) On suppose A^2 est irréductible. Soit $1 \le i, j \le n$.

Il existe dans A^2 un chemin d'origine i et d'extrémité j de longueur $m \in \mathbb{N}$

donc d'après II.C., il existe dans A un chemin d'origine i et d'extrémité j de longueur 2m

On vient de montrer par la contraposée que si A n'est pas irréductible, alors A^2 n'est pas irréductible

J est un exemple simple d'une matrice carrée irréductible telle que $J^2=I_2$ ne soit pas irréductible

V.A.5) Par l'absurde, on suppose qu'il existe une matrice A irréductible telle que $\rho(A) \leqslant 0$

donc $Sp(A) = \{0\}$ donc A est nilpotente comme en III.B.5

or il existe un circuit de 1 vers 1 de longueur $m \geqslant 2$ en concaténant un chemin de 1 vers 2 et un autre de 2 vers 1 donc en concaténant n fois ce circuit à lui-même on obtient un circuit de 1 à 1 de longueur nm

donc $0 < [A^{nm}]_{1,1} = 0$ car $A^n = 0$ Absurde

Ainsi le rayon spectral d'une matrice irréductible est strictement positif.

V.B - Deux caractérisations de l'irréductibilité et une condition nécessaire

V.B.1) On remarque que B, $C \ge 0$. On procède par implications circulaires

A est irréductible $\Longrightarrow B > 0$: On suppose que A est irréductible.

Soit $i, j \in [1, n]$. On a pour tout $k \in [0, n-1]$, $[A^k]_{i,j} \ge 0$ et **V.A.2** nous fournit $m \in [0, n-1]$ tel que $[A^m]_{i,j} > 0$

donc $[B]_{i,j} = [I_n]_{i,j} + [A]_{i,j} + [A^2]_{i,j} + \cdots + [A^{n-1}]_{i,j} > 0$ ainsi B > 0 $B > 0 \Longrightarrow C > 0$: On suppose B > 0. Montrons C > 0

Par l'absurde si on n'avait pas C > 0

Comme $C \ge 0$, il existerait $i, j \in [1, n]$ tel que $[C]_{i,j} = 0$ donc $\sum_{k=0}^{n-1} \binom{n-1}{k} \left[A^k\right]_{i,j} = 0$ (somme de termes positifs)

donc $\forall k \in [0, n-1], [A^k]_{i,j} = 0$ donc $[B]_{i,j} = 0$ Absurde

 $C > 0 \Longrightarrow A$ est irréductible : On suppose C > 0. Soit $i, j \in [1, n]$.

$$\overline{\text{On a } \sum_{k=0}^{n-1} \binom{n-1}{k} \left[\mathbf{A}^k \right]_{i,j} > 0}$$

donc il existe $m \in [\![0,n-1]\!]$ tel que $[\mathbf{A}^m]_{i,j} > 0$ donc \mathbf{A} est bien irréductible

On montré l'équivalence entre les trois propriétés :

- la matrice A est irréductible;
- la matrice $B = I_n + A + A^2 + \cdots + A^{n-1}$ est strictement positive;
- la matrice $C = (I_n + A)^{n-1}$ est strictement positive.

V.B.2) Si une colonne de A était nulle, alors il existerait un vecteur e de la base canonique tel que Ae=0donc pour tout $m \ge 1$, on aurait $A^m e = 0$ et donc A^m aurait la même colonne nulle.

et donc A ne pourrait pas être irréductible

Vue la définition, A est irréductible si et seulement si A^{\top} est irréductible

donc si A irréductible alors aucune ligne (et aucune colonne) de A n'est identiquement nulle

V. C - Deux conditions suffisantes de primitivité

V.C.1) Soit i, j dans [1, n]. Il existe un chemin \mathcal{C} de longueur $\ell \leq n-1$ de i vers j dans A (irréductible)

On considère alors le chemin \mathcal{C}' dans $A: i \to i \to \cdots \to i$ de longueur $n-1-\ell$ (éventuellement vide)

la concaténation de \mathcal{C}' et \mathcal{C} est un chemin de longueur n-1 de i vers j donc $a_{i,j}^{(n-1)} > 0$

si
$$\forall i \in [1, n], a_{i,i} > 0$$
 alors $A^{n-1} > 0$

 $\overline{\mathbf{V.C.2}}$) Soit j, k dans [1, n]. Prenons $i \in [1, n]$ tel que $a_{i,i} > 0$.

Comme A est irréductible, il existe dans A un chemin C_1 de j vers i et un autre C_2 de i vers k

La concaténation de C_1 et C_2 nous fournit un chemin C de j vers k passant par i

Parmi les n^2 chemins ainsi définis, on en prend celui de longueur maximale notée m.

On note ℓ la longueur du chemin \mathcal{C} et \mathcal{C}_3 le chemin constant dans $A: i \to i \to \cdots \to i \to i$ de longueur $m-\ell$

Alors la concaténation de C_1 , C_3 et C_2 est un chemin dans A d'origine j, d'extrémité k de longueur m

donc $a_{i,k}^{(m)} > 0$ donc $A^m > 0$ si $\exists i \in [1, n], a_{i,i} > 0$, alors A est primitive

VI Le coefficient d'imprimitivité

VI.A - Diagonales des puissances d'une matrice imprimitive

Je trouve que la phrase « la totalité du spectre de A est invariante dans la multiplication par $\omega = \exp(2i\pi/p)$ » est ambiguë. Pour $\lambda \in \operatorname{Sp}(A)$, je note m_{λ} la multiplicité de la valeur propre λ et j'interprète l'énoncé par :

$$\left\{ \left(\omega \lambda, \mu_{\lambda} \right) / \lambda \in \operatorname{Sp}(A) \right\} = \left\{ \left(\lambda, \mu_{\lambda} \right) / \lambda \in \operatorname{Sp}(A) \right\}$$

ce qui est plus fort que $\{\omega\lambda/\lambda\in \mathrm{Sp}(A)\}=\mathrm{Sp}(A)$. Je fais cela pour deux raisons :

- -1) je ne sais pas faire avec cette dernière condition plus faible
- -2) le terme « totalité » nous guide vers un sens plus fort.

Ainsi on a
$$\operatorname{tr}(\mathbf{A}^m) = \sum_{\lambda \in \operatorname{Sp}(\mathbf{A})} \mu_{\lambda} \lambda^m = \sum_{\lambda \in \operatorname{Sp}(\mathbf{A})} \mu_{\lambda} (\omega \lambda)^m = \omega^m \operatorname{tr}(\mathbf{A}^m)$$
 or $\omega^m \neq 1$ car m non multiple de p

donc
$$0 = \operatorname{tr}(A^m) = \sum_{i=1}^n a_{i,i}^{(m)}$$
 or $A^m \ge 0$ donc la diagonale de A^m est identiquement nulle.

Par conséquent par l'absurde si on avait
$$\lim_{m \to +\infty} \left(\frac{1}{r}A\right)^m = L$$
 avec $\operatorname{rg} L = 1$ et $L^2 = L$

On aurait
$$\lim_{m \to +\infty} \left(\frac{1}{r}A\right)^{pm+1} = L$$

donc les coefficients diagonaux de L seraient nuls (limites par coefficients)

comme $L^2 = L$, on a rg(L) = tr(L) = 0 donc 1 = 0

Ainsi le résultat de la question IV.B.3 ne tient plus si A est imprimitive <u>OU BIEN</u> (j'ai un doute) Je trouve cette question difficile à interpréter!

Si on avait l'existence de
$$L \in \mathcal{M}_n(\mathbb{R})$$
 tel que $\lim_{m \to +\infty} \left(\frac{1}{r}A\right)^m = L$

Prenons x un vecteur propre de A pour la valeur propre ωn

On a pour
$$k \in \mathbb{N}$$
, $\left(\frac{1}{r}A\right)^{pk}x = x$ et $\left(\frac{1}{r}A\right)^{pk+1}x = \omega x$

donc si
$$\lim_{m \to +\infty} \left(\frac{1}{r}A\right)^m = L$$
 alors $Lx = x = \omega x$ donc $\omega = 1$ car $x \neq 0$ Absurde

VI.B - Une matrice de Weilandt « modifiée »

VI.B.1) Attention si
$$n=2$$
, il y a un problème! Pour $n=2$, on a $Z_2=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Pour tout $m \in \mathbb{N}$, $[\mathbf{Z}_2^m]_{2,1} = 0$ car la matrice est triangulaire supérieure. donc \mathbf{Z}_2 n'est pas irréductible.

Je suppose désormais que $n \geqslant 3$

Le cycle $2 \to 3 \to \cdots n \to 2$ montre que pour tous $i, j \ge 2$ il existe un chemin dans \mathbf{Z}_n de i à j

En concaténant avec le chemin $(n-1) \to 1$ (respectivement $1 \to 2$), cela permet de construire un chemin dans Z_n qui va de i à 1 (respectivement de 1 à j) Valable car $n-1 \ge 2$

De plus $Z_n \ge 0$ donc d'après **V.A.1**, la matrice Z_n est irréductible

VI.B.2) Je suppose encore que
$$n \geqslant 3$$

$$\operatorname{On\ a} \chi_{\mathbf{Z}_n} = \begin{vmatrix} \mathbf{X} & -1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots & \ddots & \ddots & 0 \\ -1 & 0 & \cdots & 0 & \ddots & -1 \\ 0 & -1 & 0 & \cdots & 0 & \mathbf{X} \end{vmatrix}_{[n]}. \operatorname{On\ effectue\ C}_1 \leftarrow \mathbf{C}_1 - \mathbf{C}_n \operatorname{puis\ L}_n \leftarrow \mathbf{L}_n + \mathbf{L}_1$$

$$\chi_{Z_n} = \begin{vmatrix} X & -1 & 0 & \cdots & 0 & X \mid_{[n]} \\ X & -1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \ddots & -1 \\ 0 & -2 & 0 & \cdots & 0 & X \mid_{[n]} \end{vmatrix} = X \begin{vmatrix} X & -1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \ddots & -1 \\ -2 & 0 & \cdots & 0 & X \end{vmatrix}_{[n-1]}$$

On développe par rapport à la première colonne

Si $n \geqslant 3$, alors \mathbb{Z}_n admet n-1 valeurs propres de modules $\rho(\mathbb{Z}_n) = 2^{1/(n-1)}$

les valeurs propres de \mathbb{Z}_n sont toutes de multiplicités 1 et $\mathrm{Sp}(\mathbb{Z}_n) = \{0\} \cup \left\{2^{1/(n-1)} \exp(k2\mathrm{i}\pi/(n-1)) \mid k \in [0,n-2]\right\}$

Par l'absurde si \mathbf{Z}_n n'était pas imprimitive, comme \mathbf{Z}_n est irréductible alors \mathbf{Z}_n serait primitive

donc Z_n vérifierait la propriété admise de la partie IV donc Z_n aurait unevaleur propre dominante ABSURDE et donc Z_n est imprimitive car

 $\operatorname{Autre\ argument}$: (a priori on ne se sert pas de la partie ${\sf IV}$)

D'après Cayley-Hamilton, $\mathbf{Z}_n^n = 2\mathbf{Z}_n$ donc pour tout $p \in \mathbb{N}$, il existe $\alpha_p > 0$ tel que $\mathbf{Z}_n^{(n^p)} = \alpha_p \mathbf{Z}_n$

Par l'absurde, si Z_n était primitive

on pourrait trouver $m \in \mathbb{N}$ tel que $\forall q \geq m, \mathbb{Z}_n^q > 0$

c'est absurde pour $n^p \geqslant m$

Vue que les valeurs propres à modules dominant sont les solutions de l'équation $\lambda^p = \rho^p$ (il y en a donc p)

On en déduit que
$$\boxed{\mathbf{Z}_n \text{ est imprimitive de coefficient d'imprimitivité } n-1}$$

VI.B.3) On a $\mathbf{Z}_n^{n^2-2n+2}=\mathbf{Z}_n^2\left(\mathbf{Z}_n^n\right)^{n-2}=\mathbf{Z}_n^2\left(2\mathbf{Z}_n\right)^{n-2}=2^{n-2}\mathbf{Z}_n^n$
Ainsi $\boxed{\mathbf{Z}_n^{n^2-2n+2}=2^{n-1}\mathbf{Z}_n}$

Par l'absurde si Z_n était primitive, on aurait $Z_n^{n^2-2n+2}>0$ d'après $\mathbf{II.D}$ Absurde

ainsi $| Z_n |$ n'est pas primitive

VI.C - Coefficient d'imprimitivité et polynôme caractéristique

Coquille dans l'énoncé : $\chi_{A}(X) = X^{n} + +c_{k_{1}}X^{n-k_{1}} + \mathbf{c_{k_{2}}}X^{n-k_{2}} + \cdots + c_{k_{s}}X^{n-k_{s}}$ au lieu de $\chi_{A}(X) = X^{n} + +c_{k_{1}}X^{n-k_{1}} + c_{k_{1}}X^{n-k_{2}} + \cdots + c_{k_{s}}X^{n-k_{s}}$

VI.C.1) J'utilise encore mon interprétation (forte) de l'invariance par $z \mapsto \omega z$, où $\omega = \exp(2i\pi/p)$

Le polynôme scindé unitaire de degré $n: \frac{1}{\omega^n} \chi_A(\omega X)$ a exactement les mêmes racines que $\chi_A(X)$ avec les mêmes multiplicités. donc $\chi_{\rm A}(\omega {\rm X}) = \omega^n \chi_{\rm A}({\rm X})$

Ainsi pour tout i, on a $\omega^{n-k_i}c_{k_i}=\omega^n c_{k_i}$ donc $\omega^{k_i}=1$

donc pour tout $k \in \{k_1, k_2, \dots, k_s\}$, l'entier k est divisible par p

VI.C.2) Je pense que $r = \rho(A)$; l'énoncé est encore reprochable ici

On a $\beta^{k_j} = 1$ car les k_i sont tous divisibles par qp et car $\beta = e^{2i\pi/(qp)}$

ainsi $\chi_{\mathbf{A}}(\beta r) = (\beta r)^n + c_{k_1}(\beta r)^{n-k_1} + c_{k_2}(\beta r)^{n-k_2} + \cdots + c_{k_s}(\beta r)^{n-k_s} = \beta^n \left(r^n + c_{k_1}r^{n-k_1} + c_{k_2}r^{n-k_2} + \cdots + c_{k_s}r^{n-k_s}\right)$

donc $\chi_{A}(\beta r) = \beta^{n} \chi_{A}(r) = 0$ car $r \in Sp(A)$ d'après la propriété admise pour les matrices irréductibles de VI

donc βr est une racine du polynôme χ_A en faisant un calcul analogue à la question précédente.

or $|\beta r| = r$ mais βr ne vérifie pas $(\beta r)^p = r^p$ car q > 1

ce qui est absurde avec la propriété admise pour les matrices irréductibles de VI

donc | pour tout $q \ge 2$ l'un des k_i n'est pas divisible par pq

VI.D - Coefficient d'imprimitivité et longueur des circuits

 $a_{i,j}^{(r)} > 0$, $a_{j,i}^{(s)} > 0$ et si k dans L_j nous fournit dans A les chemins C_1 de i vers j, C_2 de j vers i et C_3 de j vers j de longueurs respectives : r, s et k

En concaténant $\mathcal{C}_1, \mathcal{C}_3, \mathcal{C}_2$, on obtient $r+k+s \in \mathcal{L}_i$ donc d_i divise r+k+set d_i divise r+s par concaténation de \mathcal{C}_1 et \mathcal{C}_2 donc pour tout $k \in \{0\} \cup L_i$, | d_i divise r + k + s

en remarquant que k = (r + k + s) - (r + 0 + s): d_i divise k donc leurs pgcd pour $k \in L_i$: d_i divise d_i

VI.D.2) Avec **III.B.3**, si A est primitive on a m et $m+1 \in L_1$ car $A^m > 0$ et $A^{m+1} > 0$ comme m et m+1 sont premiers entre eux on a $d_1=1$

si p = 1, alors d = 1

VI.D.3)Soit $\ell \in L_1$.

On a donc $\left[A^{\ell}\right]_{1,1} > 0$.

donc par la contraposée de VI.A, p divise ℓ

donc p divise tous les éléments de L_1 donc leur pgcd ainsi |p| divise d

VI.D.4)

a) On a
$$\psi(\sigma) = \left(\prod_{j \notin \mathcal{H}} [x\mathbf{I}_n - \mathbf{A}]_{j,\sigma(j)}\right) \left(\prod_{j \in \mathcal{H}} [x\mathbf{I}_n - \mathbf{A}]_{j,\sigma(j)}\right) = \prod_{j \notin \mathcal{H}} \left(x - [\mathbf{A}]_{j,j}\right) \left(\prod_{j \in \mathcal{H}} - [\mathbf{A}]_{j,\sigma(j)}\right)$$
 ainsi
$$\psi(\sigma) = (-1)^h x^{n-h} \prod_{j \in \mathcal{H}} a_{j,\sigma(j)}.$$

b) On a $\psi(\sigma) \neq 0$ donc $\forall j \in H, a_{j,\sigma(j)} > 0$

ceci nous fournit les chemins dans A de longueur 1 : $i \to \sigma(i)$ pour tout $i \in H$

or (j_1, j_2, \ldots, j_m) , avec $m \ge 2$, est un cycle entrant dans la décomposition σ en produit de cycles à supports disjoints ainsi $j_m \to j_1$ et pour tout $i \in [1, m-1]$, $j_i \to j_{i+1}$ sont des chemins dans A de longueur 1

car $\sigma(j_m) = j_1$ et pour tout $i \in [1, m-1], \sigma(j_i) = j_{i+1}$

donc
$$j_1 \rightarrow j_2 \cdots \rightarrow j_m \rightarrow j_1$$
 est un circuit dans la matrice A

donc $m \in L_{j_1}$ et ainsi | m est un multiple de d

comme c'est vrai pour tout les cardinaux m, des supports disjoints des cycles dont la réunion est H

la somme de ces cardinaux est encore multiple de d alors | h sont est multiple de d

c) Soit $x \in \mathbb{R} \setminus \{a_{i,i} / 1 \le i \le n\}$ de sorte que si un coefficients de $xI_n - A$ est nul, il s'agit d'un coefficient en dehors de la diagonale.

On note E est l'ensemble des permutations σ de $[\![1,n]\!]$ tel que $\psi(\sigma)\neq 0$ où $\psi(\sigma)=\prod_{j=1}^n [x\mathbf{I}_n-\mathbf{A}]_{j,\sigma(j)}$

On remarque : $[xI_n - A]_{j,\sigma(j)} = 0 \Longrightarrow j \neq \sigma(j)$ et donc $[xI_n - A]_{j,\sigma(j)} = 0 \Longrightarrow [A]_{j,\sigma(j)} = 0$ Cet ensemble E ne dépend pas de x même si $\psi(\sigma)$ dépend de x car x n'est pas sur la diagonale de A

On a donc
$$\chi_{\mathcal{A}}(x) = \sum_{\sigma \in \mathcal{E}} \psi(\sigma)$$
 où

donc d'après a) :
$$\chi_{A}(x) = \sum_{\sigma \in E} x^{n-h} (-1)^{h} \prod_{j \in H} a_{j,\sigma(j)}$$
 où h dépend de σ comme en a)

comme les h sont des multiples de d, $\chi_{A}(x)$ s'écrit : $\chi_{A}(x) = x^{n} + \alpha_{1}x^{n-d} + \alpha_{2}x^{n-2d} + \cdots + \alpha_{k}x^{n-kd} + \cdots$ où les α_z sont éventuellement nuls

ceci étant valable sur l'ensemble infini $\mathbb{R}\setminus\{a_{i,i}/1\leqslant i\leqslant n\}$ (égalité de polynômes) On peut conclure que $\chi_{\mathbf{A}}(x)$ s'écrit : $\chi_{\mathbf{A}}(x)=x^n+\alpha_1x^{n-d}+\alpha_2x^{n-2d}+\cdots+\alpha_kx^{n-kd}+\cdots$ Par l'absurde on suppose que tous les α_z sont nuls, alors $\chi_{\mathbf{A}}=\mathbf{X}^n$ Absurde avec $\mathbf{V}.\mathbf{A}.\mathbf{5}$

Prenons alors k tel que $\alpha_k \neq 0$, on a d'après VI.C) kd divise p

ainsi d est un diviseur de p On conclut que p = d

• • • FIN • • •