CORRECTION DE L'ÉPREUVE ENSAE 2003

Première partie

I.1. Si x ou y est nul, la réponse est immédiate.

On suppose donc x>0 et y>0 et on écrit $x=e^a, y=e^b.$ $xy=e^{a+b},$ on pose $\alpha=pa,$ $\beta=pb$ d'où

$$xy = \exp\left(\frac{1}{p}\alpha + \frac{1}{q}\beta\right) \le \frac{1}{p}e^{\alpha} + \frac{1}{q}e^{\beta}$$

grâce à la convexité de l'exponentielle. On conclut en remarquant que $e^{\alpha}=x^{p}, e^{\beta}=y^{q}$. Remarque : on a égalité dans cette inégalité ssi $x^{p}=y^{q}$.

I.2. Inégalité de Hölder. On note $A = \left(\sum_{n=1}^{N} |a_n|^p\right)^{1/p}$ et $B = \left(\sum_{n=1}^{N} |b_n|^p\right)^{1/p}$. On suppose dans un premier temps que A = B = 1.

Comme $|a_n b_n| \le \frac{1}{p} |a_n|^p + \frac{1}{q} |b_n|^q$ alors, en sommant sur n on obtient

$$\left| \sum_{n=1}^{N} a_n b_n \right| \le \sum_{n=1}^{N} |a_n b_n| \le \frac{1}{p} \sum_{n=1}^{N} |a_n|^p + \frac{1}{q} \sum_{n=1}^{N} |b_n|^q$$

$$\le \frac{1}{p} + \frac{1}{q} = 1$$

ce qui prouve l'inégalité dans ce cas.

Dans le cas général on applique le résultat précédent à $a'_n = \frac{a_n}{A}$ et $b'_n = \frac{b_n}{B}$.

I.3. Si B=1 (on conserve les notations de la question précédente) alors, en appliquant l'inégalité de la question **I.2** on obtient

(1)
$$\left| \sum_{n=1}^{N} a_n b_n \right| \le \left(\sum_{n=1}^{N} |a_n|^p \right)^{1/p}$$

Cas d'égalité :

- on suppose, comme à la question précédente, que A = 1. On a dit dans le I.1 qu'il y avait égalité lorsque x^p = y^q d'où l'idée de poser b_n = ε_n|a_n|^{p/q} où ε_n est du signe de a_n. On obtient alors a_nb_n = |a_n|^{1+p/q} = |a_n|^p ce qui donne égalité dans (1).
 Cas général : on pose a'_n = a_n/A et on utilise ce que l'on vient de faire (on pose
- Cas général : on pose $a'_n = \frac{a_n}{A}$ et on utilise ce que l'on vient de faire (on pose $b_n = \varepsilon_n |a'_n|^{p/q}$) d'où $\sum_{n=1}^N a'_n b_n = 1$ ce qui donne

$$\left| \sum_{n=1}^{N} a_n b_n \right| = \left(\sum_{n=1}^{N} |a_n|^p \right)^{1/p}$$

d'où sup
$$\left\{ \left| \sum_{n=1}^{N} a_n b_n \right|, \sum_{n=1}^{N} |b_n|^q = 1 \right\} = \left(\sum_{n=1}^{N} |a_n|^p \right)^{1/p}$$
.

I.4. Inégalité de Minkowski. Ici on pose $||a||_p = \left(\sum_{n=1}^N |a_n|^p\right)^{1/p}$.

$$\sum_{n=1}^{N} |a_n| \cdot \underbrace{|a_n + b_n|^{p-1}}_{=b'_n} \le ||a||_p \left(\sum_{n=1}^{N} |a_n + b_n|^{(p-1)q} \right)^{1/q}$$

$$\le ||a||_p \left(\sum_{n=1}^{N} |a_n + b_n|^p \right)^{1/q}.$$

On procède de même avec l'autre membre d'où, en additionnant

$$\sum_{n=1}^{N} |a_n + b_n|^p \le [\|a\|_p + \|b\|_q] \left(\sum_{n=1}^{N} |a_n + b_n|^p\right)^{1/q}.$$

On divise alors les deux membres par $\left(\sum_{n=1}^{N}|a_n+b_n|^p\right)^{1/q}$ (que l'on suppose non nul, le cas de nullité étant trivial) pour obtenir l'inégalité de Minkowski : $||a+b||_p \le ||a||_p + ||b||_p$.

I.5. a. On a vu à la question précédente l'inégalité triangulaire. On vérifie facilement que $\|a\|_p = 0 \Leftrightarrow a = 0$ puis $\|\lambda a\|_p = |\lambda|.\|a\|_p$. Montrons maintenant que $\theta: b \in \ell_N^q \mapsto \theta(b) \in (\ell_N^p)^*$ est une isométrie.

En renversant les rôles de p et q au **I.3** on a

$$\|\theta(b)\| = \sup_{\|a\|_p = 1} |\theta(b)(a)| = \|b\|_q$$

ce qui signifie bien que θ est une isométrie.

b. On prend toujours θ et $b \in \ell_N^{\infty}$. Avec $b_n = \varepsilon_n$ où ε_n est du signe de a_n on a $\theta(b)(a) = ||a||_1$, on en déduit que

$$\sup \left\{ \left| \sum_{n=1}^{N} a_n b_n \right|, \|b\|_{\infty} = 1 \right\} = \|a\|_1$$

et par conséquent que θ est une isométrie de ℓ_N^{∞} sur $(\ell_N^1)^*$.

On prend ensuite θ et $b \in \ell_N^1$. Avec $b_n = \begin{cases} 0 & \text{si } n \neq i \\ \varepsilon_i & \text{si } n = i \end{cases}$ où i est l'indice tel que $|a_i| = \max |a_j|$ et ε_i est le signe de a_i . On a $\theta(b)(a) = ||a||_{\infty}$, on en déduit que

$$\sup \left\{ \left| \sum_{n=1}^{N} a_n b_n \right|, \|b\|_1 = 1 \right\} = \|a\|_{\infty}$$

et par conséquent que θ est une isométrie de ℓ_N^1 sur $(\ell_N^\infty)^*$.

DEUXIÈME PARTIE

II.1. a. Soient u et v deux vecteurs de F alors

$$f(u) + f(v) = f(u+v) \le |||f|||.||u+v|| \le |||f|||(||u-x_0|| + ||x_0+v||)$$
d'où

$$\underbrace{f(u) - |||f|||.||u - x_0||}_{\text{minorant sur } v} \le \underbrace{|||f|||.||v + x_0|| - f(v)}_{\text{majorant sur } u}$$

d'où l'inégalité en prenant la borne supérieure à gauche, la borne inférieure à droite.

b. On prend alors α dans l'intervalle (non vide) entre le sup et l'inf d'où, pour tout vecteur v de F:

$$|f(v) - |||f|||.||v - x_0|| \le \alpha \le |||f|||.||v + x_0|| - f(v).$$

c. \tilde{f} est bien une forme linéaire (continue car on est en dimension finie). Soit $x = v + tx_0$, on suppose $t \neq 0$ en appliquant l'inégalité précédente on a

$$f(v/t + x_0) = f(v/t) + \alpha \le |||f|||.||v/t + x_0||$$

$$f(-v/t - x_0) = f(-v/t) - \alpha \le |||f|||.|| - v/t - x_0||$$

d'où, en combinant ces 2 inégalités : $|f(v/t + x_0)| \le |||f|||.||v/t + x_0||$ et finalement

$$|f(v+tx_0)| = |t| \cdot |f(v/t+x_0)| \le |t| \cdot ||f|| \cdot ||v/t+x_0|| = |||f||| \cdot ||v+tx_0||$$

relation encore valable si t = 0.

On obtient dans un premier temps $|||\tilde{f}||| \le |||f|||$ puis, comme $\tilde{f}_{|F} = f$ on en déduit finalement que $|||\tilde{f}||| = |||f|||$.

II.2. Soit (x_0, x_1, \ldots, x_p) une famille libre de vecteurs telle que $E = F \oplus \text{Vect}(x_0, x_1, \ldots, x_p)$. On pose $F_i = F \oplus \text{Vect}(x_0, \ldots, x_i)$.

Par récurrence on construit des formes linéaires f_i définies sur F_i telles que $f_{i|F} = f$ et $|||f_i||| = |||f|||$. On pose alors $g = f_p$ qui répond à la question.

II.3. Si |||f||| = 1 alors $|f(x)| \le |||f||| \cdot ||x|| \le ||x||$ donc

$$\sup\{|f(x)|, |||f||| = 1\} \le ||x||.$$

- Si x = 0 l'égalité dans l'inégalité ci-dessus est évidente.
- Si $x \neq 0$ on définit f sur F = Vect(x) par f(x) = ||x|| et on prolonge f à E grâce à la question **II.2**. On obtient $g \in E^*$ telle que |||g||| = 1 avec g(x) = ||x|| ce qui donne l'égalité là aussi.

Troisième partie

On pose dans toute cette partie $\rho(E, F) = \inf\{||u|||.||u^{-1}|||, u \in GL(E, F)\}$ et, grâce à la continuité du logarithme, on remarque que $d(E, F) = \ln(\rho(E, F))$.

III.1. a. Pour tout x de F on a

$$||x|| = ||u \circ u^{-1}x)|| \le |||u|||.|||u^{-1}|||.||x||$$

d'où, en simplifiant par $||x|| \neq 0$, $1 \leq |||u|||.|||u^{-1}|||$ et par conséquent $\rho(E,F) \geq 1$ soit $d(E,F) \geq 0$.

- **b.** On a l'équivalence $u \in GL(E, F) \Leftrightarrow u^{-1} \in GL(F, E)$ donc d(E, F) = d(F, E).
- **III.2.** a. Si $u \in GL(E, F)$, $\lambda \in \mathbb{R}^*$ alors $v = \lambda u \in GL(E, F)$ et $v^{-1} = \frac{1}{\lambda} u^{-1}$ par conséquent $|||u|||.|||u^{-1}||| = |||v|||.|||v^{-1}|||$ on peut ainsi redéfinir d(E, F) par

$$d(E, F) = \inf\{\ln(||u^{-1}|||, u \in GL(E, F), |||u||| = 1\}.$$

Par caractérisation de la borne inférieure on sait qu'il existe une suite (u_n) d'applications de $\operatorname{GL}(E,F)$, de norme 1, telle que $||u_n^{-1}||| \to \rho(E,F)$. Comme la sphère unité S(0,1) en dimension finie est compacte on peut en extraire une suite convergente dans S(0,1) que l'on note encore (u_n) . Soit u la limite de cette suite. De même la suite $(||u_n^{-1}|||)$ de \mathbb{R}_+^* ayant une limite non nulle se situe dans un segment [a,b] de \mathbb{R}_+^* donc la suite (u_n^{-1}) est dans un compact (fermé borné), là encore on peut extraire de la suite (u_n^{-1}) une suite convergeant vers v. Par continuité de la loi de composition on a $u \circ v = \operatorname{Id}_F$ et $v \circ u = \operatorname{Id}_E$, on a bien $u \in \operatorname{GL}(E,F)$, |||u||| = 1 et $|||u^{-1}||| = \rho(E,F)$, la borne inférieure est bien atteinte.

- **b.** Si E et F sont isométriques alors il existe $u \in \mathcal{L}(E, F)$ tel que, pour tout x de E, ||u(x)|| = ||x|| donc, pour tout y de F, $||u^{-1}(y)|| = ||y||$ ce qui se traduit par $|||u||| = |||u^{-1}||| = 1$ puis $d(E, F) \le 0$ soit finalement d(E, F) = 0.
 - Si d(E, F) = 0 alors il existe u dans GL(E, F) tel que $|||u||| = |||u^{-1}||| = 1$ (en appliquant le résultat du a). On a alors

$$\forall x \in E, \ \|u(x)\| \le \|x\| \text{ et } \forall y \in F, \ \|u^{-1}(y)\| \le \|y\|$$

et, pour y = u(x) on obtient $||x|| \le ||u(x)|| \le ||x||$ pour tout x soit ||u(x)|| = ||x|| et par conséquent u est une isométrie.

III.3. Si $u \in GL(E, F)$, $v \in GL(F, G)$ alors $w = v \circ u \in GL(E, G)$ et comme $|||w||| \le ||||v|||.|||u|||$ et $|||w^{-1}||| \le |||v^{-1}|||.|||u^{-1}|||$ on obtient

$$d(E,G) \le \ln(|||w|||.|||w^{-1}|||)$$

$$\le \ln(|||u|||.|||u^{-1}|||) + \ln(|||v|||.|||v^{-1}|||)$$

et ceci pour tout $u \in GL(E, F)$, pour tout $v \in GL(F, G)$. Par un passage aux bornes inférieures on arrive à

$$d(E,G) \le d(E,F) + d(F,G).$$

- III.4. a. $u^* \in \mathcal{L}(F^*, E^*)$ par composition des applications linéaires.
 - Pour tout y de F on a $|u^*(\zeta)(y)| \le |||\zeta|||.|||u|||.||x||$ donc $|||u^*(\zeta)||| \le |||\zeta|||.|||u|||$ pour tout ζ et par conséquent $|||u^*||| \le |||u|||$.
 - Grâce au II.3 on a

$$||u(x)|| = \sup\{|(\zeta \circ u)(x)|, |||\zeta||| = 1\}$$

et comme $\{\zeta \in F^*, |||\zeta||| = 1\}$ est compact, on sait que cette borne supérieure est atteinte donc il existe $\zeta_0 \in F^*$ tel que $|||\zeta_0||| = 1$ et

$$||u(x)|| = |(\zeta_0 \circ u)(x)| = |u^*(\zeta_0)(x)| \le |||u^*|||.|||\zeta_0|||.||x||$$

i.e. $\forall x \in E$, $||u(x)|| \le |||u^*||| \cdot ||x||$ donc $|||u||| \le |||u^*||| \cdot ||x||$

Conclusion : on a l'égalité $|||u||| = |||u^*|||$.

b. Vu la **2.a** il existe u dans GL(E, F) tel que |||u||| = 1 et $|||u^{-1}||| = \rho(E, F)$. Or $(u^{-1})^* = (u^*)^{-1}$

En effet
$$(u^{-1})^*(\xi) = \xi \circ u^{-1}$$
 et $u^*[(u^*)^{-1}(\xi)] = \xi = (u^*)^{-1}(\xi) \circ u$ donc

$$(u^*)^{-1}(\xi) = \xi \circ u^{-1} = (u^{-1})^*(\xi).$$

On a ainsi $d(F^*, E^*) \le \ln(|||u^*|||.|||(u^*)^{-1}|||) \le d(E, F).$

De même il existe u^* dans $GL(F^*, E^*)$ tel que $|||u^*||| = 1$ et

$$d(F^*, E^*) = |||(u^*)^{-1}||| = |||(u^{-1})^*||| = |||u^{-1}||| \ge d(E, F).$$

Conclusion: $d(E^*, F^*) = d(F^*, E^*) = d(E, F)$.

Quatrième partie

- IV.1. On procède par récurrence sur m:
 - $m = 1 : \frac{1}{2} (||x_1||^2 + ||-x_1||^2) = ||x_1||^2.$
 - On suppose la propriété vraie à l'ordre m. On remarque que que, si $\varphi \in \omega_{m+1}$ alors $\psi = \varphi_{\llbracket 1,m \rrbracket} \in \omega_m$ et que, si on connaît $\psi \in \omega_m$ alors $\varphi(m+1)$ ne peut prendre que

les 2 valeurs ± 1 .

On a alors

$$\sum_{\varphi \in \omega_{m+1}} \left\| \sum_{i=1}^{m+1} \varphi(i) x_i \right\|_2^2 = \sum_{\psi \in \omega_m} \left(\left\| \sum_{i=1}^m \psi(i) x_i + x_{m+1} \right\|_2^2 + \left\| \sum_{i=1}^m \psi(i) x_i - x_{m+1} \right\|_2^2 \right)$$

$$= 2 \sum_{\psi \in \omega_m} \left(\left\| \sum_{i=1}^m \psi(i) x_i \right\|_2^2 + \left\| x_{m+1} \right\|_2^2 \right)$$

d'où la propriété en divisant par 2^{m+1} et en utilisant l'hypothèse de récurrence.

IV.2. a. Grâce au 1 on a

$$A(u) = 2^n \sum_{i=1}^n ||u(e_i)||_2^2 \le n2^n ||u||^2$$

 $\operatorname{car} \|u(e_i)\|_2 \le \||u|\|.$

b. On a
$$\sum_{\varphi \in \omega_m} \left\| \sum_{i=1}^n \varphi(i) e_i \right\|_p^2 = 2^n n^{2/p} \operatorname{car} \left\| \sum_{i=1}^n \varphi(i) e_i \right\|_p = n^{1/p}. \text{ Or}$$
$$\left\| u^{-1} \left(u \left(\sum_{i=1}^n \varphi(i) e_i \right) \right) \right\|^2 \le |||u^{-1}|||. \left\| u \left(\sum_{i=1}^n \varphi(i) e_i \right) \right\|^2$$

d'où

$$2^{n} n^{2/p} = \sum_{\varphi \in \omega_m} \left\| \sum_{i=1}^{n} \varphi(i) e_i \right\|_{n}^{2} \le |||u^{-1}|||^{2} A(u)$$

ce qui donne l'inégalité demandée en divisant par $|||u^{-1}|||^2$.

IV.3. • Si p < 2 on utilise la question 2 :

$$|||u|||.|||u^{-1}||| \ge n^{1/p-1/2}$$
 d'où $\ln(|||u|||.|||u^{-1}|||) \ge \left(\frac{1}{p} - \frac{1}{2}\right) \ln n$ par conséquent

$$\mathrm{d}(\ell_n^2, \ell_n^p) \ge \left(\frac{1}{p} - \frac{1}{2}\right) \ln n.$$

• Si p>2 on sait que ℓ_n^2 et $(\ell_n^2)^*$ sont isométriques (**I.5.a**) et si p>2 alors q<2 $(\frac{1}{p}+\frac{1}{q}=1)$ d'où

$$d((\ell_n^2)^*, (\ell_n^p)^*) = d(\ell_n^2, \ell_n^p)$$

$$= d(\ell_n^2, \ell_n^q) \ge \underbrace{\left(\frac{1}{q} - \frac{1}{2}\right) \ln n}_{=\left(\frac{1}{2} - \frac{1}{p}\right) \ln n}$$

IV.4. a. On se ramène par homothétie au cas où $||x||_p = 1$ (le cas $||x||_p = 0$ étant immédiat). On a $|x_i| \le 1$ d'où $|x_i|^{p'} \le |x_i|^p$ soit

$$\sum_{i=1}^{n} |x_i|^{p'} \le \sum_{i=1}^{n} |x_i|^p = 1$$
$$||x||_{p'} \le 1 = ||x||_p$$

b. • Si p < 2 on a $||x||_2 \le ||x||_p$ vu le a. On applique alors l'inégalité de Jensen avec $f(t) = t^{2/p}$ et $t_i = |x_i|^p$ d'où

$$\left(\frac{1}{n}\sum_{i=1}^{n}|x_i|^p\right)^{2/p} \le \frac{1}{n}\sum_{i=1}^{n}|x_i|^2$$

ce qui donne $||x||_p \le ||x||_2 n^{1/p-1/2}$. Soit Id l'identité de ℓ_n^p sur ℓ_n^2 alors l'inégalité $||x||_2 \le ||x||_p$ donne $||| \operatorname{Id} ||| \le 1$, de même $||x||_p \le ||x||_2 n^{1/p-1/2}$ donne $||| \operatorname{Id}^{-1} ||| \le n^{1/p-1/2}$.

On arrive à $\rho(\ell_n^2, \ell_n^p) \le n^{1/p-1/2}$ soit $d(\ell_n^2, \ell_n^p) \le \left(\frac{1}{n} - \frac{1}{2}\right) \ln n$.

Finalement, avec la question **3** on peut conclure $d(\ell_n^2, \ell_n^p) = \left(\frac{1}{n} - \frac{1}{2}\right) \ln n$.

• Si p > 2 alors $q < 2 \left(\frac{1}{p} + \frac{1}{q} = 1\right)$ et

$$\begin{split} \mathrm{d}(\ell_n^2,\ell_n^p) &= \mathrm{d}((\ell_n^2)^*,(\ell_n^p)^*) = \mathrm{d}(\ell_n^2,\ell_n^q) \\ &= \left(\frac{1}{q} - \frac{1}{2}\right) \ln n = \left(\frac{1}{2} - \frac{1}{p}\right) \ln n \end{split}$$

En conclusion on a le résultat final : $d(\ell_n^2, \ell_n^p) = \left| \frac{1}{2} - \frac{1}{n} \right| \ln n$.

c. Comme $(\ell_n^{\infty})^*$ est isométrique à ℓ_n^1 alors

$$d(\ell_n^{\infty}, \ell_n^2) = d((\ell_n^{\infty})^*, (\ell_n^2)^*)$$
$$= d(\ell_n^1, \ell_n^2)$$
$$= \frac{1}{2} \ln n$$

CINQUIÈME PARTIE

V.1. S_E^n est un compact de E^n donc Λ est bornée sur S_E^n et atteint sa borne supérieure. Soit (b_1, b_2, \ldots, b_n) un point de S_E^n où Λ est maximale, ce maximum est nécessairement non nul et > 0. C'est aussi le maximum en valeur absolue (à cause de la symétrie de S_E^n et des propriétés du déterminant).

Si $x \in S_E$ alors $|\Lambda(b_1, \ldots, b_{i-1}, x, b_{i+1}, \ldots, b_n)| \leq \Lambda(b_1, \ldots, b_n)$. On pose alors

$$\varphi_i(x) = \frac{\Lambda(b_1, \dots, b_{i-1}, x, b_{i+1}, \dots, b_n)}{\Lambda(b_1, \dots, b_n)}$$

Pour ||x|| = 1 on a par construction $|\varphi_i(x)| \le 1$ donc $|||\varphi_i||| \le 1$ et comme $\varphi_i(b_i) = 1$ on en déduit que $|||\varphi_i||| = 1$.

- $\nu(x) = 0 \Leftrightarrow \forall i \in [1, n], \ \varphi_i(x) = 0$ et comme les $(\varphi_i(x))$ représentent les coordonnées V.2. de x dans la base (b_1, \ldots, b_n) on en déduit que x = 0.
 - $\nu(\lambda x) = |\lambda|\nu(x)$: immédiat.
 - $\nu(x+y) \le \nu(x) + \nu(y)$ est aussi immédiat.

Soit $u: x = \sum_{i=1}^{n} \varphi_i(x)b_i \mapsto (\varphi_1(x), \dots, \varphi_n(x)) \in \ell_n^1$ alors $||u(x)||_1 = \nu(x)$ donc u est une isométrie et E_1 et ℓ_n^1 sont isométriques.

V.3. Si $x = \sum_{i=1}^{n} \varphi_i(x)b_i$ alors

$$||x|| \le \sum_{i=1}^{n} |\varphi_i(x)| \cdot \underbrace{||b_i||}_{=1} \le \nu(x)$$

et $\nu(x) = \sum_{i=1}^{n} |\varphi_i(x)| \le n||x||$ ce qui donne $|||\operatorname{Id}|||.|||\operatorname{Id}^{-1}||| \le n$ (où Id est l'application identique de E_1 dans E).

Conclusion : $d(E, E_1) \le \ln n$ et comme E_1 et ℓ_n^1 sont isométrique alors $d(E, \ell_n^1) \le \ln n$.

Sixième partie

- **VI.1.** \mathcal{R} : réflexive (X est isométrique à X).
 - \mathcal{R} : symétrique (si u est une isométrie de X sur Y alors u^{-1} est une isométrie de Y sur X).
 - \mathcal{R} : transitive (si u est une isométrie de X sur Y, v une isométrie de Y sur Z alors $v \circ u$ est une isométrie de X sur Z).

Conclusion : \mathcal{R} est une relation d'équivalence.

Cohérence de la notation : si X_1 et X_2 sont dans \widehat{X} et Y dans \widehat{Y} alors

$$d(X_1, Y) \le \underbrace{d(X_1, X_2)}_{=0} + d(X_2, Y)$$

et par symétrie $d(X_2, Y) \leq d(X_1, Y)$ d'où $d(X_1, Y) = d(X_2, Y)$.

De même, si Y_1 et Y_2 sont dans \widehat{Y} alors $d(X_1, Y_1) = d(X_2, Y_2)$ i.e. $\widehat{d}(\widehat{X}, \widehat{Y}) = d(X, Y)$ ne dépend pas des représentants choisis.

VI.2. a. Φ_n bornée : $||x|| \le ||x||_1 \le 1$ sur B_1 donc $\sup\{||x||, X \in B_1\} \le 1$. Φ_n fermée : on sait que la convergence uniforme entraı̂ne la convergence simple. Si $(\nu_p)_{p\in\mathbb{N}}$ est une suite de $(\Phi_n)^{\mathbb{N}}$ qui converge vers $\nu \in \mathcal{C}(B_1)$ alors

$$\forall x \in B_1, \begin{cases} \nu_p(x) \le ||x||_1 & \Rightarrow \nu(x) \le ||x||_1 \\ ||x||_1 \le n\nu_p(x) & \Rightarrow ||x||_1 \le n\nu(x) \end{cases}$$

Pour $x \neq 0$ on pose $N_p(x) = \|x\|_1 \nu_p\left(\frac{x}{\|x\|_1}\right)$ et $N(x) = \|x\|_1 \nu\left(\frac{x}{\|x\|_1}\right)$ puis on définit $N_p(0) = N(0) = 0$. N_p est la norme associée à ν_p . On vérifie immédiatement que $\forall x \in \ell_n^1$, $\lim_{p \to +\infty} N_p(x) = N(x)$. Montrons que N est une norme :

- Comme $\nu(x) \ge \frac{1}{n} \|x\|_1$ on a $N(x) \ge \frac{1}{n} \|x\|_1$ pour tout x de ℓ_n^1 . Si N(x) = 0 alors x = 0
- $N_p(\lambda x) = |\lambda| N_p(x)$ donne, par passage à la limite sur p, $N(\lambda x) = |\lambda| N(x)$.
- $N_p(x+y) \leq N_p(x) + N_p(y)$ donne, là aussi par passage à la limite sur p, $N(x+y) \leq N(x) + N(y)$.

Conclusion : ν est bien la restriction à B_1 d'une norme.

- **b.** Comme f est la restriction d'une norme ν alors $|f(x) f(y)| \le \nu(x y) \le ||x y||_1$, il suffit de prendre $\delta = \varepsilon$.
- **VI.3. a.** τ est bien définie : $\|.\|$ est déterminée sans ambiguïté par f. En effet si $x \in E$ est un vecteur non nul alors $\|x\| = \|x\|_1 f\left(\frac{x}{\|x\|_1}\right)$.

- τ est surjective : si on se donne $(\mathbb{R}^n, \|.\|)$ alors f est la restriction de $\|.\|$ à la boule unité fermée ce qui permet de trouver un antécédent à la classe de $(\mathbb{R}^n, \|.\|).$
- **b.** Montrons tout d'abord que :

 - (i) $\exists a > 0 \text{ tel que } \inf_{y \in B_1} f(y) = a > 0,$ (ii) $\exists b > 0 \text{ tel que } \inf_{j \in \mathbb{N}} \inf_{y \in B_1} f_j(y) = b > 0.$
 - (i) f est continue sur le compact B_1 donc f atteint sa borne inférieure a > 0.
 - (ii) $f_j \to f$ done, pour $\varepsilon = \frac{a}{2}$, $\exists J \in \mathbb{N}$ tel que $\forall x \in B_1$, $|f_j(x) f(x)| \le a/2$ done $f_j(x) \ge a/2$ et $\inf_{x \in B_1} f_j(x) = b_j \ge a/2$ ce qui donne $\inf_{j \ge J} b_j \ge a/2$. Soit $\beta = \inf_{j < J} b_j$ alors $\inf_{j \in \mathbb{N}} (\inf_{x \in B_1} f_j(x)) = b \ge \min(a/2, \beta) > 0$.

On pose ensuite $E = (\mathbb{R}^n, ||.||), E_j = (\mathbb{R}^n, \nu_j)$ (où ν_j est la norme associée à f_j). On

$$|||\operatorname{Id}_{E,E_j}||| = \sup_{x \in E \setminus \{0\}} \frac{\nu_j(x)}{||x||} = \sup_{x \in B_1} \frac{f_j(x)}{f(x)} = \frac{f_j(x_j)}{f(x)}$$

car la borne supérieure est atteinte sur le compact B_1 . De même $|||\operatorname{Id}_{E_j,E}||| = \frac{f(y_j)}{f(y_j)}$. Traduisons maintenant le fait que $f_j \to f$ i.e.

$$\forall \varepsilon > 0, \ \exists J \in \mathbb{N} \mid \forall j \ge J, \ \forall x \in B_1, \ |f_j(x) - f(x)| \le \frac{\varepsilon \min(a, b)}{2}$$

alors

$$\left| \frac{f_j(x_j)}{f(x_j)} - 1 \right| \le \frac{\varepsilon \min(a, b)}{2f(x_j)} \le \frac{\varepsilon}{2} \text{ et } \left| \frac{f(y_j)}{f_j(y_j)} - 1 \right| \le \frac{\varepsilon \min(a, b)}{2f_j(y_j)} \le \frac{\varepsilon}{2}$$

On a ainsi $|||\operatorname{Id}_{E,E_j}||| \le 1 + \frac{\varepsilon}{2}$ et $|||\operatorname{Id}_{E_j,E}||| \le 1 + \frac{\varepsilon}{2}$ soit

$$d(E, E_i) \le 2\ln(1 + \varepsilon/2) \le \varepsilon$$

 $(\operatorname{car} \ln(1+x) \leq x)$ et comme $\widehat{d}(\tau(f_i),\tau(f)) = \operatorname{d}(E,E_i)$ on a bien prouvé que $\widehat{d}(\tau(f_i), \tau(f)) \to 0.$

VI.4. Vu le **3.b** τ est une application continue donc $\widehat{\mathcal{E}}_n = \tau(\Phi_n)$ est un compact (image continue d'un compact). On vérifie finalement que \widehat{d} est une distance.