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Séries entiéres formelles

Walter ApPEL & Marc REzZzOUK

A Premiéres propriétés

(1) La série f, évaluée en z, est de terme général (f), 2™, dont le module est |(f), 2"| = (f)n |2|". La condition

« f ( |z|) » se lisant également « la série Y ( f)n |z|” converge », et par comparaison de séries positives, la série
>>(f)n 2™ converge absolument, donc converge, et

1F@)] = D (a2 <D (D 2" = F(I21)-
n=0 n=0

Si f( |z| ) alors la série f converge en z et |f(x)| < f( 2] ).

1
Si l'on choisit par exemple f = =3 (-1)"z" alors 2 =) 2" = et
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(2) On suppose f < g.

Pour tout z € C tel que |z| < p(g), choisissons R € ||z|, p(g)[, alors > (g)n R™ converge, et notamment, la suite
((g)n R”)n est bornée ; en particulier,

(] < (@)l 1271 < (@) B 1oL R = 0(5)"

donc, > (f)n 2™ converge et |z| < p(f).
Cela prouve que ]0, p(g)[ C [0, p(f)], et donc

p(f) = p(g)-

Remarque : Note : question de cours fort étrange, a cause de la « définition » vraiment maladroite du rayon de convergence
selon I’énoncé, caractérisé par une convergence méme pas absolue.

(3) Soit 7 > 0. Soit f une série entiére telle que r < p(f). La suite de terme général (f),, 7™ est bornée, on note M > 0
un majorant du module de cette suite. On a donc
M a

Vn € N |(f)n] <

rn - 1

en posant a = rM > 0. Puisque

a a 1 a n
r—zi;l—z/riz(T"ﬁ)Z

on a donc bien montré que f < .
—z

Supposons maintenant que f <

, C’est-a-dire | (f)x| < a/r*** pour tout k € N.
r—z

Alors, pour tout |z| < r, la série |(f)x| z* converge absolument donc converge, et donc |z| < p(f).

Ainsi [0, [ C [0, p(f)], et donc r < p(f).

r<p(f) = Ja>0 f< i = r < p(f).
Notamment, en libérant r, on a montré que [0, p(f)[ C [0, p(f)], et done p(f) < p(f)
Or f < f donc la question (2) montre que p(f) < p(f)
p(f) = n(f)

Remarque : La encore, avec la définition usuelle du rayon d’une série entiére, la propriété p(f) = p(f) est une trivialité
qui ne nécessite pas ces acrobaties amusantes mais sans doute destabilisantes pour les éléves.



(4)

(5)

Pour tout k£ € N,

(f-9),=(f 9l =

ce qui montre que

Notamment, par les questions (2) et (3),
p(f-9)=p(f9) <olf-3).

Pour tout z € C tel que |z| < min (p(f), p(9)), les séries S(f)n 2™ et S2(§)n 2™ convergent absolument, donc leur
produit de Cauchy S (f - §), 2" converge absolument, donc converge.

On en déduit que p(f - §) > min (p(f), p(9)) et donc, en réutilisant la question (3),

p(f-g) > min (p(f),p(g)).

Remarque : Encore une fois, les propriétés habituelles du cours permettent de démontrer en une ligne la deuxiéme
propriété sans passer par la premiére. En clair, un étudiant risque de perdre plus de temps a essayer de comprendre ce que
pense le concepteur du sujet que de (re)démontrer les choses de maniére élémentaire.

B Composition

Remarquons avant de commencer que, si g € Oy, alors g¥ € Oy (ce sera prouvé dans la question qui suit, mais

c’est assez immédiat), et donc
o0

(fog)m =Y (Fk(g")m, (+)

k=0
la somme étant en réalité finie.

On commence par vérifier un petit lemme trés simple :

Lemme 1 Si ¢ € O et € Oy, alors ¢ - € Opyy.
En effet, pour tout ¢ < k+ ¢, on peut calculer (¢-v); = Z;zo(é)i (1)i—; = 0 car dans cette somme, si j < k alors

(¢); =0, tandis que, si j > k alors i — j < £ et (¢);—; = 0.
Par récurrence, on en déduit que

Soit m < nf; alors

Dans cette somme, si k < n alors (f)r = 0, et si k > n, alors h¥ € Oy C Oy, donc (h*),, = 0. Ainsi (foh),, = 0.

De maniére générale, on remarquera aussi ce résultat, extrémement utile pour la suite :

Lemme 2 Si¢ € O et ) € Oy, alors (1)), ne dépend que des coefficients (@) g, .-, (O)m—k €t (V)ky- -, (V)m—s-
Notamment, si ) € Oy, alors (Y*),, ne dépend que des (1); pour £ <i < m — kL.

Invoquons maintenant la structure d’algébre commutative de C[[z]] pour utiliser une formule type « binéme de

Newton » :
"k
h k _ i, hk_i.
=3 (7)o



On peut maintenant calculer, pour un entier m <n+£¢ —1,

m m k
(Folg+m), = (Ne(g+m*),, =D (Fr (Z (’;) g hki>
=0

k=0 k=0 m
(f © g)m = Z(f)k (gk)m
k=0
m k—1 k
h) — _ i, hk,—i
(folg+h) —fog),, = (Fk (Z (Z.>g )
k=0 =0 €0 hiye’ ™
Or, dans cette derniére somme :
— Si k < n,alors (f)r =0.
— Si k > n, puisque la fonction affine ¢ : ¢ — i 4 (k — )¢ est décroissante et vérifie donc pour i =0,...,k — 1

o)z opk—1)=k—-14+L>2n—-1+L>m

ce qui montre que (g° - hk_i)m = 0; ainsi, le second facteur est nul.
Au final, on a bien (fo (g+h)— fog)m —0.

[folg+h)—fog€Oni]

(6) Pour tout m entier, on a

[(F 0 Dl <D NI )] = 3o (P (6F)m
k=0 k=0
< Z(f)k (gk)m = (foﬁ)m- car par (4), EE < g"
k=0
fog=fog.

Choisissons z tel que 0 < g(x) < p(f); c’est possible car § est continue au voisinage de 0 et §(0) = 0. On effectue
alors, dans R U {+00}, des calculs qui, on le rappelle, sont notamment justifiés dés qu’'on a prouvé qu’une des
sommes est finie :

(D (@ )ma™ sik >m, alors (g*)m =0

o0
)k Z (@ )m ™ Fubini positif
k=0 m=0

=3 (D (4(@)" < +oo.

Notamment, la série entier fo g converge en x > 0, donc p(f 0 g) > 0. On en déduit que

p(fog) 5 p(fog) (f) p(fog)>0.

‘Si p(f) > 0et p(g) >0, alors p(f o g) >0.‘

(7) On suppose h < g, c’est-a-dire |(h)k| < gx pour tout k € N. Remarquons d’abord que la question (4) montre que

hk < h¥ et que, pour des fonctions & coefficients positifs, une récurrence immédiate montre que

p<¢ = ¢F <yF

donc .
Rk < h* < g



Alors pour tout m € N,

m

D )k (W)

k=0

|(f 0 h)m| = <Dk (65 )m = (Fo9)m

k=0

‘Si h < g et f,g a coefficients positifs, alors foh < fog. ‘

(8) On peut reprendre exactement tout le calcul de la question (6), en manipulant des sommes de réels positifs ou

infinis :
S (Fogmr™ =33 Dk (g")mr™
m=0 m=0 k=0
=3 > Delg)mr™ sik >m, alors (§°)m =0
m=0 k=0
=> (e Y _ (g )mr™ Fubini positif
k=0 m=0

Si f et g a coefficients positifs et si r € [0, +00], alors f o g(r) = f(g(r)).

(9) Si |z| < p(f o), alors ce qui précede montre que la famille

() (9)m 2™) o iyen?

est sommable, on peut donc effectuer le méme calcul, toutes les sommes « intermédiaires » étant bien définies
(c’est une des conséquences du théoréme de sommation par paquets)

Z(fog)mzm: ZZ si k> m, alors (g8)ym =0
m=0 m=0 k=0
= (e ()m=" Fubing
k=0 m=0
=" (9(2)" = f(9(2)
k=0

Si |2 < p(f 0 ), alors fog(z) = f(g(2)).

(10) Soient f, g, h des séries enticres, avec g, h € O;.

Tout d’abord, énongons un petit lemme, équivalent pour les séries formelles de la formule évidente pour des
produits et compositions de fonctions « (1)) oh = (poh)- (1 o h) ».

Lemme 3 Sih € Oy, alors (¢-p)oh = (poh)-(¢oh).

Munis de ce lemme, nous pouvons nous lancer dans le calcul formel, en utilisant la forme du produit de
composition. Toutes les sommes que nous manipulons sont en réalité finies.

Soit m € N. Alors

((fog)oh),, = (Z(f)e (ge)k> (h*)m

k=0 \{¢=0
= Z(f)z Z Z e (g" o h)m
£=0 k=0 =0
(g*oh)m
= Z(f)i ((g o h)e)m grdce au lemme @ g’ oh=(goh)
=0
= (fo(goh)),

Ainsi,



[(fog)oh=Ffo(goh)]

Montrons maintenant le lemme [3] Toujours en utilisant la forme du produit de composition, on a pour tout
m e N :

((¢v)oh), Zw (h*)m

k=0 i+j=k
= Z ?)i (V) (R, dépaquetage
i,jEN
= (0)i (1); Z (h*) (W) produit de Cauchy
ijEN k-+e=m
- ¥ (T (Lo
k+l=m \i=0 =
= > (@oh(oh)=((goh)-(Yoh),,
k+4=m

ce qui achéve la démonstration du lemme, et de la question.

C Série majorante

(11) Procédons par analyse. Soit h une fonction développable en série entiére vérifiant la relation

h 2
Vo € |—rr| h(x)—a(x—kb_(z)(x)).
Fixons momentanément x dans |—r, r[; alors le réel h(x) est solution de I’équation du second degré
(a+ 1) h(x)* — (azx + b) h(x) 4 abx = 0,

donc vaut

W) = % \Q)A(”J“) A@) =B (1+¢@)  ¢(z) =a’b 22— 2ab" (20 + L)a

Le choix de signe négatif s’impose pour avoir d’une part la condition ~(0) = 0, et d’autre part la continuité de la
fonction.

On pose donc, aprés avoir fixé un voisinage |—r, r[ sur lequel la fonction ¢ prend des valeurs incluses dans |—1, 1],

ax +b— \/A(x)

Vo € ]—r,r| h(z):= 2@t D)

A(z) =b*(1+ ¢(z)) é(r) = a*b 2 2% — 2ab™ ' (20 + 1)a.
La fonction z — /A(x) est la composée de x — by/1 + z et de la fonction ¢ € Oy, toutes deux développable en

série entiére, donc est développable en série entiére d’aprés la question (9), ce qui montre que h est développable
en série entiére.

Il existe r > 0 et h : ]—r,7[ — R développable en série entiére telle que h(0) =0

) eteal oma(os 1Y)

(12) Montrons par récurrence sur k € N que (g)r < (k). On rappelle que 'on a g, h € Oy,
g=a(l+ fog) h=a(l+ foh)

et que f est & coefficients strictement positifs.
e Au rang 0, on a bien hy = gg = 0.



(13)

(14)

e Soit k un entier tel que 0 < (g); < (h); pour i =0, ..., k. Alors, les coefficients de f o g étant tous positifs

(@41 < a1+ (fog)rs].

Or
k+1

(fogrtr = Z(f)k:Jrl (97 )kt

j=1
et d’aprés le lemme (¢7)k+1 ne dépend que g1, . . ., gi, sous forme de somme de produits. D’aprés ’hypothése
de récurrence, on a notamment ‘ .
(9" )k+1 < (W )kta
pour tous les termes concernés; les f; étant tous positifs, on a donc

k+1

(fo @kt <Y (1 (W)a = (foh)rn

=1
puis
(9)k1 < alb1 4+ (f o Qrt1] < [0+ (F o h)ig1] = (R)k1-

Par récurrence, on a donc montré que

’Pour tout k € N, 0 < (9)x < (h)g. ‘

Cela montre que g < h et donc d’aprés (2), p(g) = p(h) > 0.

p(g) > 0.

D Série réciproque
Procédons par analyse-synthése.

Analyse

Soit h € Oy vérifiant h o f = I. Alors bien sir (h)o =0, puis 1 = (ho f); = (h)1(f)1, donc (h); = 1/
De plus, pour tout m > 2,
0=(hoflm=> Bk (F)m
k=1

donc notamment
1

(h)m (fm)m = - (h)k (fk)m

k=1

3

avec (f™)m = A" # 0.
Ainsi, la suite de terme général (h),, vérifie une relation de récurrence, et est donc entiérement déterminée.

Syntheése

Si lon pose (h)o:=0, (h)1:=1/X et

i O e (P

k=1

(h)m =

pour tout m > 2, alors la série h vérifie bien les conditions voulues.

Il existe une unique série h € O; telle que ho f = I; de plus, (h); = 1A ‘

Le travail est & peu prés le méme, puisqu’une série adéquate vérifie (g)g =0, (g)1 = 1/A et pour tout m > 2,

0=(fo)m =2 (k(g")m-

k=1

Or, d’aprés le lemme [2| pour tout k > 2, le terme (g*),, ne dépend que de (g)1,...,(g)m_1; dans la somme, le
seul terme faisant intervenir (g)., est donc (f)1 (¢)m = A(g)m. Ainsi la suite g vérifie de méme une relation de
récurrence, et est donc définie de maniére unique.



Il existe une unique série g € O; telle que fog=1. ‘

(15) Puisque ho f = fog =1, on peut écrire

h=ho(feg)
=(hof)og
:g.

g=h.
(16) Puisque I = fog=(A[+ F)og,ona
I=MNog+Fog=MA+Fog

puisque I o g = g. On peut donc écrire

(I —Fog)

> =

g:

puis par inégalité triangulaire

1 — 1
TI+Fog) < S(I+Fog).

9<)\

§<3I+FoQ).

Puisque p(F') > 0, choisissons un réel r tel que 0 < r < p(F).

d’apres (10)

question (6)

Puisque F' € O, on peut noter G = F/z% la série de terme général (G)r = (F)g—2. On bien évidemment

p(G) = p(F). D’aprés la question (3) il existe donc a > 0 telle que G' < %, et donc

On a donc grace a la question (7)

en posant o := ‘—h max (a, 1).

On peut alors appliquer le résultat de la partie [C] pour obtenir

p(g) > 0.
(17) Remarquons que fT+ Fo fT — I =0. Notons fT = I+ [G]q+ H avec H € Oq1, on a donc

G =—Fo(I+[Gla+ H)).
On utilise le dernier point de la question (5) :
Fo(I+[Gla+H)—Fo(I+][Gla) € Osp(ap1)-1 = Oara

avecn+ 2, L+ d+1 (et f=F,g=1+[Gla, h=H).
En conclusion, G — [G]g+1 € Ogy2 et

Fo(I+[Gla+H)—Fo(I+[Gla) € O4s2

=G

donc, en sommant,

[Glas1 + F o (I+[Gla) € Ogyo

(18) Effectuons une récurrence sur d > 2.
e Pour d =1, [G]2 + F € O3 (puisque [G]; = 0) donc

[é]g((l - a)s) = [ﬁ]g((l — a)s) < ﬁ((l — a)s) < ﬁ(s) < as.

1. On rappelle le raisonnement : la suite de terme général (G) r* est bornée, c’est-a-dire qu'il existe a telle que (é)k < a/r**+1 pour

tout k£ > 0.



e Soit d > 2 et supposons le résultat vrai pour d.
D’aprés la question précédente, [Glgr1 = — [F o (I + [G]d)]

[Fo(I+ [G]d)]dJrl = [Flat1 o (I +[Gla)-

(En effet, d’apres la question (5), (F — [F],,1) o (I + [Gla) € Og42.)

Ainsi,
[Glara((1 = @)s) < [Flasa (1 = a)s + [Gla((1 = 2)s))
< [ﬁ]d+1((1 —a)s+ |G a(s)) par monotonie
< [Flast (1-a)s+as) par hypothese de récurrence
< [Flata(s) < F(s) < as

E Linéarisation formelle
(19) Procédons encore par analyse-synthése.

Analyse

On suppose qu'’il existe une série H € O3 telle que H o (A\I) — AH = F o (I + H). Pour tout m > 2, on a donc

(Ho (M) = XH), = hu (A" = X) = (Fo(I+H))

m’

Or, F € O, donc (Fo (I + H))m, ne faisant intervenir que des puissances k > 2 de (I + H), ne dépend que des
coefficients (h)1, ..., (h)r_1. Puisque m > 2, la quantité A™ — X = A\(A™~! —1) est toujours non nul par hypothése,
on en déduit que la suite H vérifie donc une relation de récurrence et est entiérement déterminée.

Syntheése

On définit (H)o = (H1) = 0 et la suite H par la relation de récurrence

1

22 hp=——
o o=

Fo(I+H))

m’

Alors H € O3 et elle vérifie bien la relation H o (\[) — AH = Fo (I + H).

(20) Posons h =1+ H. La relation H o (A\I) — AH = F o (I + H) s’écrit
Ho (M) = (F—&-)\I)oh—)\ljh—i—)\H
f '
ou encore
foh=Ho(A)+ X =ho ().
En composant par ht a gauche, on obtient
hto foh=AI

ou encore

‘hTOth:)\z.

F Linéarisation, cas hyperbolique

(21) On propose deux méthodes.
17 méthode La seconde inégalité triangulaire montre que, pour tout m > 2,

AT = A=Al (A1) > AL AT =
> AL =1 (A7 4 A+ 1)

>1

donc, en posant w:=|[A| - | [\| = 1| > 0,



(22)

(23)

(24)

(25) Po

’On a trouvé w > 0 tel que |[\™ — \| > w pour tout m > 2. ‘

2° méthode Dans RU{+o0}, la suite (|A™ — A|) _ e s’annule pas et admet une limite valant [A| > 0 (si [A] < 1)

ou 400 (si |A] > 1). Il existe un rang myq tel que "

VYm = my |)\m—)\|>|2ﬁ>0.

11 suffit alors de poser w = min { |\ — | ;2 <m <mo} U{[A/2}.

‘Il existe w > 0 tel que |A™ — A| > w pour tout m > 2. ‘

Pour tout m > 2,

(R)m - (AN =) = (Ho () — )\H)m = (Fo (I+H))m
(la relation est encore vraie pour m = 0 et m = 1, les deux membres étant nuls, mais ne nous intéresse pas ici),
donc

[(Fo(I+H)),|

S

|(B)m| <
ce qui s’écrit
N 1 — 1 - N
H~<—-Fo(I+H) < —Fo(I+H).
w (6) W

PAI-<%FO(I+PAI).

Notons G = I + H, de sorte que G est a coeflicients positifs et G € O;. La relation précédente s’écrit
. 1 . . 1
G:I+H-<I—|——FOG—<B(I+FOG) avec f=max | —,1
w w

et toutes les conditions sont réunies pour appliquer de nouveau la partie |C| comme a la question (16) : FetG
sont a coefficients positifs, G € Oy et F' € Oa, et p(F) = p(F) = p(f) > 0. On en déduit que p(G) > 0, donc,

puisque p(G) = p(H) = p(H) = p(h)

[o(h) = p(H) > 0.]

G Linéarisation, cas elliptique

F .
(r) —— 0, il existe rg € ]0, 1] tel que 0 < F(r) < r.
r

Ecrivons F sous la forme F(r) = r™*+! H(r). Puisque -
r—0

Soit v € ]0, 1[. Pour tout r € [0,yro],

0 < F(r)=r™ H(r) <~™rg'r H(rg) <™

car H est croissante sur [0,79] et r§* H(ro) = F(ro) < 1.

Pour tout 7 € [0, yrq], F(r) < ~v™r.

2m 2m

F

(M) =AP= ) A(k )’“A (W =N)zF = > (F)iz" = [Flam car F € Opy.
k=m+1 a k=m+1

Enfin, puisque (Po (M) — AP —F), =0,

2m

|Po (M) = AP —F € Ogy1. |

(I+P)o(R+I)=Idonc R+ P=—-PoRE€Q,,11 car R€ Oy, P € Oy en appliquant la question (5).
Ainsi, R = P~ PoR € Opy1,puis R+ P = —Po R € Oppy1)2 C Ozpyr car R € Opyy1, P € Oppqr en
appliquant (5).

\R+P € 02m+1.\

Pour 7 € [0, VmT0],

2m
~ F 1 ~
Pry< > — [ < — F(r)
k=m-+1 min (wm+17 tee aw2m) O
1 2
< —ynr= a—mr:amr.
m Qm



(26)

(27)

(28)

Vr € [0, Ymro] , P(r) < amp,r.

Soit 7 € [0, (1 — aun)Ym7To] ; on le note sous la forme r = (1 — @y ) ymrou avec u € [0,1].
On utilise la question (18), avec F < R et G < R, s = y,,rou (le cas u = 0 étant valide),

R((l - am)s) < am,s,

donc
(6779)

R(r) = R((l - am)fymrou) < A YmTro U = - o 7.

O

Pour tout € [0, (1 — am)ym7o, R(r) < 1 r.
“a,

Puisque (I + R)o (I + P) =1,
G=[I+R)o(M+F)—AXI+R)]o(I+P).
Montrons que (I + R) o (Al + F) — A(I + R) € Oga,41 €t on conclura par (5) que G € Ogyqq car [ + F € O.
(I+R)o(M+F)—XI+R)=Ro(M+F)—AR+F.

Or d’apreés (5), et en prenant f = R, g=M et h=F, Ro(AM + F) — Ro (\) € O2y41 car R € Ogppy1.
On est ramené & montrer que A = Ro (M) = AR+ F € Ogpt1.
Mais on sait que B = P o (AI) — AP — F' € Ogpm41 (question (25)), et

A+ B = (R—FP)O()\I) —)\(R+P)60277L+1
—— ~——

€02 +1par (25) et (5) €02m+1

Donc on a bien A = Ro (AI) — AR+ F € Oay,41, et finalement

Puisque G+ A =(I+ R)o (M + F)o (I + P),
GHM=G+I=<(I+R)yo(I+F)o(I+DP),

1—ay,
L+ am)(1+ a2,

donc par la question (8), pour r € ]0, )'ymro { C 10, (1 = am)¥mro[ C 10, YmTol,

(I+R)o(I+F)(r+ P(r))
(I+R)o(I+F)(r+ amr)
(I+R) (1 + aum)r + a2y (1 + au)r) car F(s) <yMs = a2,s

é(r) +r

NN N

=(1+am)(1+a2)r

m

< ((1+am)(1+a2n)+ — (1+am)(1+azn)>r car R(u) <

) amm(l +am)(1+ a%)) .

<r(1+am+(1+am)afn+a
1—ap,

ce qui montre la premiére inégalité.

Enfin,
m (14 ) (1 2 m a2 +2
am—l—(l—&—am)afn—&—a (1 + am)( +am):ama +ag, + <1
1—a,, 1—ay,
1 t+12+2 31
car amgget la fonctionqﬁ:tr—)t% est croissante sur [0, 1] et ¢(1/5):E5<1'
A m(1 m)(1 2
G(T)<(°‘m+(1+am)a3n+a ( eh . +am)) 'S
—

On effectue bien str une récurrence sur k. On pose my, = 2~.

Par récurrence: Fy, € O,,, +1, la question (25) permet de définir Py € O,,, +1 (avec F}, au lieu de F) pour m = 2F
puis Gy € Oz 41 = Om, 41 que I'on note Fi41 et ainsi de suite.

On a bien A + Fyyy = (I + P)' o (AT + Fy) o (I + Py).
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On vérifie, en appliquant (24) a (27), que si pour tout r € [0,rg], f’;(r) < 7, alors ]/3;(7“) < aqgrT et pour
e [Oa rk+1]a .
Gi(r) = Fpy1(r) < 1.

En particulier, Fi(r;) < ri et Pr(rr41) < QorThi1.
Il reste & montrer que agrriy1 < T — Ti+1 €'est-a-dire que

1 1—0&21@
= Yok 1+ Oé%k

ce qui est immeédiat.

On a bien pu construire les suites (Fy)g et (Pg)k- ‘

(29) Commengons par remarquer que
M + Fy, = hl. o (\[ + F) o hy.

e La suite (ry)r>0 est décroissante positive donc converge vers ro, > 0.

‘roo est bien définie. ‘
e Onapourk > 1, hy = hg_1 0 (I + Py_1) donc

}Alk < ilk—l o (I+ Pk—l)

donc hic(""k) < hic—l(rk + Pk-1(jk)) < hp1(rg +rp—1 — i) = hg—1(15-1).
Ainsi, hk(’l“k) < hl(Tl) =7r+ Po(’l“l) <ri+rg—ri=ro.
e En particulier iLk(Too) < hy, (rg) < 7o par monotonie.
Remarquons, point essentiel, que hy —hi—1 = hg_10(I 4+ Py—1) —hg—101 € Oqgx—1 par 5) car Py_1 € Oy or—1.

Donc les premiers coefficients de la suite () se stabilisent, notons A la série telle que [ﬁ] ok = [Ik]on

Lemme 4 h = h, et donc [hy]or = [h]ys.

Alors

Ainsi, si ro > 0, on peut affirmer que

Preuve du lemme _ B
On veut par unicité (19)) montrer que A = hf o (A + F) o h, ou ce qui revient au méme que

ho(M)=Ah+Foh.

Pour cela, montrons que tout k, ho (\) — M —Fohe Oy 1. Posons h= hi +7g, onar, € Oy,
On sait que A\ + Fj, = h;i o (M + F) o hy, c’est-a-~dire

hg o (M + Fy,) — Ahy, — F o hy = 0.

Or, N N N
ho(M)—=Mhv—Foh=nhgo(A)—Ay—Fo(hg+rg)+ reo(N)— g .
—_—
E()Zk.Jrl d’apreés (5)

Avec I'égalité précédente,
hy o ()\I) — My — F o (hg +78)
:hkO(AI)—hkO()\I‘FFk)‘F Fohk—FO(hk+Tk) s

€05k 4

d’apres (5) et Fk1602k+1 EOz’~‘+1 d’apres (5) et Fk:602k+l

ce qui achéve de prouver que ho () — M—Fohe Oy q et donc le lemme.

Si vous repérez des erreurs, merci de les signaler a walter.appel@laposte.net
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